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Mid-quarter summary

Model family:

Probability density/mass functions

Autoregressive models. pθ(x) =
∏d

i=1 pθ(xi | x<i ).
Normalizing flow models. pθ(x) = p(z)| det(Jfθ (x))|, where z = fθ(x).
Latent variable models (e.g., variational autoencoders).
pθ(x) =

∫
pθ(x | z)p(z)dz.

Energy-based models. pθ(x) = efθ(x)/Z (θ).

Sample generation processes

Generative adversarial networks (GANs). z ∼ p(z), x = gθ(z).

Score functions

Score-based generative models.
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Mid-quarter summary

Distances of probability distributions:

KL divergence (maximum likelihood)

Autoregressive models.
Normalizing flow models.
ELBO in Variational autoencoders.
Contrastive divergence in energy-based models.

f -divergences, Wasserstein distances

Generative adversarial networks (f-GANs, WGANs).

Fisher divergence (score matching): denoising score matching, sliced
score matching

Energy-based models.
Score-based generative models.

Noise-contrastive estimation

Energy-based models.

Plan for today: Evaluating generative models
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Evaluation

In any research field, evaluation drives progress. How do we evaluate
generative models?

Evaluation of discriminative models (e.g., a classifier) is well
understood: compare task-specific loss (e.g., top-1 accuracy) on
unseen test data

Evaluating generative models is highly non-trivial.

Key question: What is the task that you care about?

Density estimation
Compression
Sampling/generation
Latent representation learning
More than one task? Custom downstream task? E.g., Semisupervised
learning, image translation, compressive sensing etc. For LLMs: Few
shot / zero shot performance through prompting?
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Evaluation - Density Estimation or Compression

Likelihood as a metric for density estimation

Split dataset into train, validation, test sets
Learn model pθ(x) using the train set
Tune hyperparameters on validation set
Evaluate generalization with likelihoods on test set: Epdata [log pθ(x)]

Measures how well the model compresses the data

Shannon coding: assign codeword of length ⌈log 1
pθ(x)

⌉ to datapoint x

Intuition: assign short codes to frequent datapoints x. Recall Morse
Code: E = •, A = •−, Q = −− •−
Average code length:
Ex∼pdata [⌈log 1

pθ(x)
⌉] ≈ Epdata [log

1
pθ(x)

] = −Epdata [log pθ(x)].

Aside: Shannon/Huffman codes are optimal but intractable to
construct. Can get practical compression schemes using Arithmetic
Coding

Equivalent to perplexity metric often used for language models:

2−
1
D
Epdata

[log pθ(x)] for x ∈ RD .
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Evaluation - Density Estimation or Compression

Why compression?

Measures how well the model has identified patterns (redundancy) in
the data.
Intuition: physical laws (e.g., F = ma) enable compression, knowing
force F we can exactly recover acceleration a through the equation.

Hutter prize: 500K for compressing Wikipedia. ”Being able to
compress well is closely related to intelligence. While intelligence is a
slippery concept, file sizes are hard numbers. Wikipedia is an extensive
snapshot of Human Knowledge. If you can compress the first 1GB of
Wikipedia better than your predecessors, your (de)compressor likely
has to be smart(er). The intention of this prize is to encourage
development of intelligent compressors/programs as a path to AGI.”

Humans achieve 1.2 to 1.3 bits per character on text (Shannon, 1951)
How well do LLMs do? Achieved 0.94 bits per character (in 2019).

Issue: Not all bits are created equal! A bit encoding life (0) vs. death
(1) is “worth” the same as rain (0) vs no rain (1). More on this later..
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Evaluation - Density Estimation or Compression

Compression is a straightforward for models which have tractable
likelihoods

Caveat

Not all models have tractable likelihoods e.g., VAEs, GANs, EBMs.

For VAEs, we can compare evidence lower bounds (ELBO) to
log-likelihoods. How about GANs? How to estimate the model likelihood
if we only have samples?

In general, unbiased estimation of probability density functions from
samples is impossible.

Approximation methods are necessary. We can use kernel density
estimates via samples alone.
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Kernel Density Estimation

Given: A model pθ(x) with an intractable/ill-defined density

Let S = {x(1), x(2), · · · , x(6)} be 6 data points drawn from pθ.

x(1) x(2) x(3) x(4) x(5) x(6)

-2.1 -1.3 -0.4 1.9 5.1 6.2

What is pθ(−0.5)?

Answer 1: Since −0.5 ̸∈ S, pθ(−0.5) = 0

Answer 2: Compute a histogram by binning the samples

Bin width= 2, min height= 1/12 (area under histogram should equal
1). What is pθ(−0.5)? 1/6 pθ(−1.99)? 1/6 pθ(−2.01)? 1/12
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Kernel Density Estimation

Answer 3: Compute kernel density estimate (KDE) over S

p̂(x) =
1

n

∑
x(i)∈S

K

(
x− x(i)

σ

)

where σ is called the bandwidth parameter and K is called the kernel
function, n is the number of samples in S.
Example: Gaussian kernel, K (u) = 1√

2π
exp

(
−1

2u
2
)

Histogram density estimate vs. KDE estimate with Gaussian kernel
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Kernel Density Estimation

A kernel K is any non-negative function satisfying two properties
Normalization:

∫∞
−∞ K (u)du = 1 (ensures KDE is also normalized)

Symmetric: K (u) = K (−u) for all u

Intuitively, a kernel is a measure of similarity between pairs of points
(function is higher when the difference in points is close to 0)
Bandwidth σ controls the smoothness (see right figure above)

Optimal sigma (black) is such that KDE is close to true density (grey)
Low sigma (red curve): undersmoothed
High sigma (green curve): oversmoothed
Tuned via crossvalidation

Con: KDE is very unreliable in higher dimensions
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Importance Sampling for latent variable models

Likelihood weighting:

p(x) = Ep(z)[p(x|z)]

Can have high variance if p(z) is far from p(z|x)!
Annealed importance sampling: Construct a sequence of
intermediate distributions that gradually interpolate from p(z) to the
unnormalized estimate of p(z|x)
General purpose technique to estimate ratios of normalizing constants
Z2/Z1 of any two unnormalized distributions via importance sampling

For estimating p(x), first distribution is p(z) (with Z1 = 1) and
second distribution is p(x|z)p(z) (with Z2 = p(x) =

∫
x p(x, z)dz)

Gives unbiased estimates of likelihoods, but biased estimates of
log-likelihoods

A good implementation available in Tensorflow probability
tfp.mcmc.sample_annealed_importance_chain
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Evaluation - Sample quality

Which of these two sets of generated samples “look” better?

Human evaluations (e.g., Mechanical Turk) are the gold standard.

HYPE: Human eYe Perceptual Evaluation (Zhou et al., 2019)

HYPEtime: the minimum time people needed to make accurate
classifications. The larger, the better.

HYPE∞: The percentage of samples that deceive people under
unlimited time. The larger, the better.

https://stanfordhci.github.io/gen-eval/
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Evaluation - Sample quality

The process of determining
HYPEtime scores.

HYPE∞ scores for samples generated from a StyleGAN.
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Evaluation - Sample quality

Which of these two sets of generated samples “look” better?

Human evaluations (e.g., Mechanical Turk) are expensive, biased,
hard to reproduce

Generalization is hard to define and assess: memorizing the training
set would give excellent samples but clearly undesirable

Quantitative evaluation of a qualitative task can have many answers

Popular metrics: Inception Scores, Frechet Inception Distance, Kernel
Inception Distance
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Inception Scores

Assumption 1: We are evaluating sample quality for generative
models trained on labelled datasets

Assumption 2: We have a good probabilistic classifier c(y |x) for
predicting the label y for any point x

We want samples from a good generative model to satisfy two
criteria: sharpness and diversity

Sharpness (S)

S = exp

(
Ex∼p

[∫
c(y |x) log c(y |x)dy

])
High sharpness implies classifier is confident in making predictions for
generated images

That is, classifier’s predictive distribution c(y |x) has low entropy
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Inception Scores

Diversity (D)

D = exp

(
−Ex∼p

[∫
c(y |x) log c(y)dy

])
where c(y) = Ex∼p[c(y |x)] is the classifier’s marginal predictive
distribution

High diversity implies c(y) has high entropy

Inception scores (IS) combine the two criteria of sharpness and
diversity into a simple metric

IS = D × S

Higher IS corresponds to better quality.

If classifier is not available, a classifier trained on a large dataset, e.g.,
Inception Net trained on the ImageNet dataset
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Frechet Inception Distance

Inception Scores only require samples from pθ and do not take into
account the desired data distribution pdata directly (only implicitly via
a classifier)

Frechet Inception Distance (FID) measures similarities in the
feature representations (e.g., those learned by a pretrained classifier)
for datapoints sampled from pθ and the test dataset

Computing FID:
Let G denote the generated samples and T denote the test dataset
Compute feature representations FG and FT for G and T respectively
(e.g., prefinal layer of Inception Net)
Fit a multivariate Gaussian to each of FG and FT . Let (µG ,ΣG) and
(µT ,ΣT ) denote the mean and covariances of the two Gaussians
FID is defined as the Wasserstein-2 distance between these two
Gaussians:

FID = ∥µT − µG∥2 + Tr(ΣT +ΣG − 2(ΣT ΣG)
1/2)

Lower FID implies better sample quality
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Kernel Inception Distance

Maximum Mean Discrepancy (MMD) is a two-sample test
statistic that compares samples from two distributions p and q by
computing differences in their moments (mean, variances etc.)

Key idea: Use a suitable kernel e.g., Gaussian to measure similarity
between points

MMD(p, q) = Ex,x′∼p[K (x, x′)]+Ex,x′∼q[K (x, x′)]−2Ex∼p,x′∼q[K (x, x′)]

Intuitively, MMD is comparing the “similarity” between samples
within p and q individually to the samples from the mixture of p and q

Kernel Inception Distance (KID): compute the MMD in the
feature space of a classifier (e.g., Inception Network)

FID vs. KID

FID is biased (can only be positive), KID is unbiased
FID can be evaluated in O(n) time, KID evaluation requires O(n2) time

Stefano Ermon (AI Lab) Deep Generative Models Lecture 15 18 / 28



Evaluating sample quality for text2image models

Many metrics to consider when evaluating text2image models: quality
(FID, Inception, KID, etc), alignment with provided caption (CLIP
score), biases, etc.

HEIM: Holistic Evaluation of Text2Image models

26 models, 29 scenarios, 33 metrics (automated and human)
https://crfm.stanford.edu/heim/latest/
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Evaluating latent representations

What does it mean to learn “good” latent representations?

For a downstream task, the representations can be evaluated based
on the corresponding performance metrics e.g., accuracy for
semi-supervised learning, reconstruction quality for denoising

For unsupervised tasks, there is no one-size-fits-all

Three commonly used notions for evaluating unsupervised latent
representations

Clustering
Compression
Disentanglement
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Clustering

Representations that can group together points based on some
semantic attribute are potentially useful (e.g., semi-supervised
classification)

Clusters can be obtained by applying k-means or any other algorithm
in the latent space of generative model

2D representations learned by two generative models for MNIST
digits with colors denoting true labels. Which is better? B or D?
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Clustering

For labelled datasets, there exists many quantitative evaluation metrics

Note labels are only used for evaluation, not obtaining clusters itself (i.e.,
clustering is unsupervised)

from sklearn.metrics.cluster import completeness score,

homogeneity score, v measure score

Completeness score (between [0, 1]): maximized when all the data points
that are members of a given class are elements of the same cluster
completeness score(labels true=[0, 0, 1, 1], labels pred=[0,

1, 0, 1]) % 0

Homogeneity score (between [0, 1]): maximized when all of its clusters
contain only data points which are members of a single class
homogeneity score(labels true=[0, 0, 1, 1], labels pred=[1,

1, 0, 0]) % 1

V measure score (also called normalized mutual information, between [0,
1]): harmonic mean of completeness and homogeneity score
v measure score(labels true=[0, 0, 1, 1], labels pred=[1, 1,

0, 0]) % 1
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Lossy Compression or Reconstruction

Latent representations can be evaluated based on the maximum
compression they can achieve without significant loss in
reconstruction accuracy

Standard metrics such as Mean Squared Error (MSE), Peak Signal to
Noise Ratio (PSNR), Structure Similarity Index (SSIM)
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Disentanglement

Intuitively, we want representations that disentangle independent
and interpretable attributes of the observed data

Provide user control over the attributes of the generated data

When Z1 is fixed, size of the generated object never changes
When Z1 is changed, the change is restricted to the size of the
generated object
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Disentanglement

Many quantitative evaluation metrics

Beta-VAE metric (Higgins et al., 2017): Accuracy of a linear classifier
that predicts a fixed factor of variation
Many other metrics: Factor-VAE metric, Mutual Information Gap, SAP
score, DCI disentanglement, Modularity
Check disentanglement lib for implementations of these metrics

Disentangling generative factors using only unlabeled data is
theoretically impossible without additional assumptions
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Solving tasks through prompting

A language model is a generative model of text, e.g.
pθ(next word | sentence)
A language model can be used to directly solve tasks without
extracting representations by specifying tasks in natural language

For example, in sentiment classification, given a text (e.g., movie
review), the goal is to predict the sentiment (positive or negative).
Choose sentence =Classify the sentiment of the movie reviews below as either ”Positive” or ”Negative”.
Example 1 Movie Review: This has got to be one of the best episodes of Doctor Who .. I cannot WAIT until next weeks
episode to find how they get out of this mess. Sentiment: Positive
Example 2 Movie Review: The fifth collaboration between .. in such a dull, incoherent film. Sentiment: Negative

Example 3 Movie Review: I viewed the first two nights before coming to IMDb .. Now I am not so sure. Sentiment:

Use pθ(next word | sentence) to predict the next word ( ). Is it
”Positive” or ”Negative”?

Many prompting strategies are possible (Prompt Engineering)

Adaptation by finetuning the model is also widely used
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Solving tasks through prompting

Holistic evaluation of language models:
https://crfm.stanford.edu/helm/latest/

73 scenarios, 65 metrics (accuracy, calibration, robustness, fairness,
bias, toxicity, and efficiency), 81 models

BigBench: https://github.com/google/BIG-bench

Over 200 tasks (QA, reasoning, math, riddles, etc)
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Summary

Quantitative evaluation of generative models is a challenging task

For downstream applications, one can rely on application-specific
metrics . But is the correct distribution of downstream tasks to
evaluate on?

For unsupervised evaluation, metrics can significantly vary based on
end goal: density estimation, sampling, latent representations
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