
Normalizing Flow Models

Stefano Ermon

Stanford University

Lecture 8

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 1 / 1



Normalizing flow models

Consider a directed, latent-variable model over observed variables X
and latent variables Z

In a normalizing flow model, the mapping between Z and X , given
by fθ : Rn 7→ Rn, is deterministic and invertible such that X = fθ(Z )
and Z = f−1

θ (X )

Using change of variables, the marginal likelihood p(x) is given by

pX (x; θ) = pZ
(
f−1
θ (x)

) ∣∣∣∣∣det
(
∂f−1

θ (x)

∂x

)∣∣∣∣∣
Note: x, z need to be continuous and have the same dimension.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 2 / 1



A Flow of Transformations

Normalizing: Change of variables gives a normalized density after
applying an invertible transformation
Flow: Invertible transformations can be composed with each other

zm = fmθ ◦ · · · ◦ f1θ (z0) = fmθ (fm−1
θ (· · · (f1θ (z0)))) ≜ fθ(z0)

Start with a simple distribution for z0 (e.g., Gaussian)

Apply a sequence of M invertible transformations to finally obtain
x = zM

By change of variables

pX (x; θ) = pZ
(
f−1
θ (x)

) M∏
m=1

∣∣∣∣det(∂(fmθ )−1(zm)

∂zm

)∣∣∣∣
(Note: determininant of product equals product of determinants)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 3 / 1



Planar flows (Rezende & Mohamed, 2016)

Base distribution: Gaussian

Base distribution: Uniform

10 planar transformations can transform simple distributions into a
more complex one

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 4 / 1



Learning and Inference

Learning via maximum likelihood over the dataset D

max
θ

log pX (D; θ) =
∑
x∈D

log pZ
(
f−1
θ (x)

)
+ log

∣∣∣∣∣det
(
∂f−1

θ (x)

∂x

)∣∣∣∣∣
Exact likelihood evaluation via inverse tranformation x 7→ z and
change of variables formula

Sampling via forward transformation z 7→ x

z ∼ pZ (z) x = fθ(z)

Latent representations inferred via inverse transformation (no
inference network required!)

z = f−1
θ (x)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 5 / 1



Desiderata for flow models

Simple prior pZ (z) that allows for efficient sampling and tractable
likelihood evaluation. E.g., isotropic Gaussian

Invertible transformations with tractable evaluation:

Likelihood evaluation requires efficient evaluation of x 7→ z mapping
Sampling requires efficient evaluation of z 7→ x mapping

Computing likelihoods also requires the evaluation of determinants of
n × n Jacobian matrices, where n is the data dimensionality

Computing the determinant for an n × n matrix is O(n3): prohibitively
expensive within a learning loop!
Key idea: Choose tranformations so that the resulting Jacobian matrix
has special structure. For example, the determinant of a triangular
matrix is the product of the diagonal entries, i.e., an O(n) operation

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 6 / 1



Triangular Jacobian

x = (x1, · · · , xn) = f(z) = (f1(z), · · · , fn(z))

J =
∂f

∂z
=

 ∂f1
∂z1

· · · ∂f1
∂zn

· · · · · · · · ·
∂fn
∂z1

· · · ∂fn
∂zn


Suppose xi = fi (z) only depends on z≤i . Then

J =
∂f

∂z
=

 ∂f1
∂z1

· · · 0

· · · · · · · · ·
∂fn
∂z1

· · · ∂fn
∂zn


has lower triangular structure. Determinant can be computed in linear
time. Similarly, the Jacobian is upper triangular if xi only depends on z≥i

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 7 / 1



Recap of normalizing flow models

So far

Transform simple to complex distributions via sequence of invertible
transformations

Directed latent variable models with marginal likelihood given by the
change of variables formula

Triangular Jacobian permits efficient evaluation of log-likelihoods

Plan for today

Invertible transformations with diagonal Jacobians (NICE, Real-NVP)

Autoregressive Models as Normalizing Flow Models

Invertible CNNs (MintNet)

Gaussianization flows

Case Study: Probability density distillation for efficient learning and
inference in Parallel Wavenet

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 8 / 1



Designing invertible transformations

NICE or Nonlinear Independent Components Estimation (Dinh et al.,
2014) composes two kinds of invertible transformations: additive
coupling layers and rescaling layers

Real-NVP (Dinh et al., 2017)

Inverse Autoregressive Flow (Kingma et al., 2016)

Masked Autoregressive Flow (Papamakarios et al., 2017)

I-resnet (Behrmann et al, 2018)

Glow (Kingma et al, 2018)

MintNet (Song et al., 2019)

And many more

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 9 / 1



NICE - Additive coupling layers

Partition the variables z into two disjoint subsets, say z1:d and zd+1:n for
any 1 ≤ d < n

Forward mapping z 7→ x:
x1:d = z1:d (identity transformation)
xd+1:n = zd+1:n +mθ(z1:d) (mθ(·) is a neural network with parameters
θ, d input units, and n − d output units)

Inverse mapping x 7→ z:
z1:d = x1:d (identity transformation)
zd+1:n = xd+1:n −mθ(x1:d)

Jacobian of forward mapping:

J =
∂x

∂z
=

(
Id 0

∂xd+1:n

∂z1:d
In−d

)

det(J) = 1

Volume preserving transformation since determinant is 1.
Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 10 / 1



NICE - Rescaling layers

Additive coupling layers are composed together (with arbitrary
partitions of variables in each layer)

Final layer of NICE applies a rescaling transformation

Forward mapping z 7→ x:
xi = sizi

where si > 0 is the scaling factor for the i-th dimension.

Inverse mapping x 7→ z:

zi =
xi
si

Jacobian of forward mapping:

J = diag(s)

det(J) =
n∏

i=1

si

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 11 / 1



Samples generated via NICE

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 12 / 1



Samples generated via NICE

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 13 / 1



Real-NVP: Non-volume preserving extension of NICE

Forward mapping z 7→ x:
x1:d = z1:d (identity transformation)
xd+1:n = zd+1:n ⊙ exp(αθ(z1:d)) + µθ(z1:d)
µθ(·) and αθ(·) are both neural networks with parameters θ, d input
units, and n − d output units [⊙ denotes elementwise product]

Inverse mapping x 7→ z:
z1:d = x1:d (identity transformation)
zd+1:n = (xd+1:n − µθ(x1:d))⊙ (exp(−αθ(x1:d)))

Jacobian of forward mapping:

J =
∂x

∂z
=

(
Id 0

∂xd+1:n

∂z1:d
diag(exp(αθ(z1:d)))

)

det(J) =
n∏

i=d+1

exp(αθ(z1:d)i ) = exp

(
n∑

i=d+1

αθ(z1:d)i

)

Non-volume preserving transformation in general since determinant can
be less than or greater than 1

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 14 / 1



Samples generated via Real-NVP

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 15 / 1



Latent space interpolations via Real-NVP

Using with four validation examples z(1), z(2), z(3), z(4), define interpolated
z as:

z = cosϕ(z(1)cosϕ′ + z(2)sinϕ′) + sinϕ(z(3)cosϕ′ + z(4)sinϕ′)

with manifold parameterized by ϕ and ϕ′.
Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 16 / 1



Continuous Autoregressive models as flow models

Consider a Gaussian autoregressive model:

p(x) =
n∏

i=1

p(xi |x<i )

such that p(xi | x<i ) = N (µi (x1, · · · , xi−1), exp(αi (x1, · · · , xi−1))
2).

Here, µi (·) and αi (·) are neural networks for i > 1 and constants for
i = 1.

Sampler for this model:

Sample zi ∼ N (0, 1) for i = 1, · · · , n
Let x1 = exp(α1)z1 + µ1. Compute µ2(x1), α2(x1)
Let x2 = exp(α2)z2 + µ2. Compute µ3(x1, x2), α3(x1, x2)
Let x3 = exp(α3)z3 + µ3. ...

Flow interpretation: transforms samples from the standard Gaussian
(z1, z2, . . . , zn) to those generated from the model (x1, x2, . . . , xn) via
invertible transformations (parameterized by µi (·), αi (·))

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 17 / 1



Masked Autoregressive Flow (MAF)

Forward mapping from z 7→ x:
Let x1 = exp(α1)z1 + µ1. Compute µ2(x1), α2(x1)
Let x2 = exp(α2)z2 + µ2. Compute µ3(x1, x2), α3(x1, x2)

Sampling is sequential and slow (like autoregressive): O(n) time

Figure adapted from Eric Jang’s blog
Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 18 / 1



Masked Autoregressive Flow (MAF)

Inverse mapping from x 7→ z:
Compute all µi , αi (can be done in parallel using e.g., MADE)
Let z1 = (x1 − µ1)/ exp(α1) (scale and shift)
Let z2 = (x2 − µ2)/ exp(α2)
Let z3 = (x3 − µ3)/ exp(α3) ...

Jacobian is lower diagonal, hence efficient determinant computation

Likelihood evaluation is easy and parallelizable (like MADE)

Layers with different variable orderings can be stacked

Figure adapted from Eric Jang’s blog
Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 19 / 1



Inverse Autoregressive Flow (IAF)

Forward mapping from z 7→ x (parallel):

Sample zi ∼ N (0, 1) for i = 1, · · · , n
Compute all µi , αi (can be done in parallel)
Let x1 = exp(α1)z1 + µ1

Let x2 = exp(α2)z2 + µ2 ...
Inverse mapping from x 7→ z (sequential):

Let z1 = (x1 − µ1)/ exp(α1). Compute µ2(z1), α2(z1)
Let z2 = (x2 − µ2)/ exp(α2). Compute µ3(z1, z2), α3(z1, z2)

Fast to sample from, slow to evaluate likelihoods of data points (train)

Note: Fast to evaluate likelihoods of a generated point (cache z1, z2, . . . , zn)

Figure adapted from Eric Jang’s blog
Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 20 / 1



IAF is inverse of MAF

Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

Interchanging z and x in the inverse transformation of MAF gives the
forward transformation of IAF

Similarly, forward transformation of MAF is inverse transformation of
IAF

Figure adapted from Eric Jang’s blog
Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 21 / 1



IAF vs. MAF

Computational tradeoffs

MAF: Fast likelihood evaluation, slow sampling
IAF: Fast sampling, slow likelihood evaluation

MAF more suited for training based on MLE, density estimation

IAF more suited for real-time generation

Can we get the best of both worlds?

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 22 / 1



Parallel Wavenet

Two part training with a teacher and student model

Teacher is parameterized by MAF. Teacher can be efficiently trained
via MLE

Once teacher is trained, initialize a student model parameterized by
IAF. Student model cannot efficiently evaluate density for external
datapoints but allows for efficient sampling

Key observation: IAF can also efficiently evaluate densities of its
own generations (via caching the noise variates z1, z2, . . . , zn)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 23 / 1



Parallel Wavenet

Probability density distillation: Student distribution is trained to
minimize the KL divergence between student (s) and teacher (t)

DKL(s, t) = Ex∼s [log s(x)− log t(x)]

Evaluating and optimizing Monte Carlo estimates of this objective
requires:

Samples x from student model (IAF)
Density of x assigned by student model
Density of x assigned by teacher model (MAF)

All operations above can be implemented efficiently

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 24 / 1



Parallel Wavenet: Overall algorithm

Training

Step 1: Train teacher model (MAF) via MLE
Step 2: Train student model (IAF) to minimize KL divergence with
teacher

Test-time: Use student model for testing

Improves sampling efficiency over original Wavenet (vanilla
autoregressive model) by 1000x!

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 25 / 1



MintNet (Song et al., 2019)

MintNet: Building invertible neural networks with masked
convolutions.

A regular convolutional neural network is powerful, but it is not
invertible and its Jacobian determinant is expensive.

We can instead use masked convolutions like in autoregressive models
to enforce ordering (like PixelCNN)

Because of the ordering, the Jacobian matrix is triangular and the
determinant is efficient to compute.

If all the diagonal elements of the Jacobian matrix are (strictly)
positive, the transformation is invertible.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 26 / 1



MintNet (Song et al., 2019)

Illustration of a masked convolution with 3 filters and kernel size 3×3.

Solid checkerboard cubes inside each filter represent unmasked
weights, while the transparent blue blocks represent the weights that
have been masked out.

The receptive field of each filter on the input feature maps is
indicated by regions shaded with the pattern (the colored square)
below the corresponding filter.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 27 / 1



MintNet (Song et al., 2019)

Uncurated samples on MNIST, CIFAR-10, and ImageNet 32x32
datasets

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 28 / 1



Gaussianization Flows (Meng et al., 2020)

Let X = fθ(Z ) be a flow model with Gaussian prior
Z ∼ N (0, I ) = pZ , and let X̃ ∼ pdata be a random vector distributed
according to the true data distribution.

Flow models are trained with maximum likelihood to minimize the KL
divergence DKL (pdata ∥ pθ(x)) = DKL

(
pX̃
∥∥ pX

)
. Gaussian

samples transformed through fθ should be distributed as the data.

It can be shown that DKL

(
pX̃
∥∥ pX

)
= DKL

(
pf −1

θ (X̃ )

∥∥∥ pf −1
θ (X )

)
=

DKL

(
pf −1

θ (X̃ )

∥∥∥ pZ

)
. Data samples transformed through f −1

θ should

be distributed as Gaussian

How can we achieve this?

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 29 / 1



Gaussianization Flows (Meng et al., 2020)

Let’s start with a 1D example. Let the data X̃ have density pdata and
cumulative density function (CDF) Fdata(a) =

∫ a
−∞ pdata.

Inverse CDF trick: If Fdata is known, we can sample from pdata via
X̃ = F−1

data(U) where U ∈ [0, 1] is a uniform random variable.

This means that U = Fdata(X̃ ) is uniform. We can transform U into a
Gaussian using the inverse CDF trick: Φ−1(U) = Φ−1(Fdata(X̃ )).

The invertible transformation Φ−1 ◦ Fdata Gaussianizes the data!

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 30 / 1



Gaussianization Flows (Meng et al., 2020)

Step 1: Dimension-wise Gaussianization (Jacobian is a diagonal
matrix and is tractable)

Input data Dimension-wise Gaussianization

Note: Even though each dimension is marginally Gaussian, they are
not jointly Gaussian. Aside: Approximating this with a Gaussian prior
is a shallow flow model known as a copula model (Sklar, 1959).

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 31 / 1



Gaussianization Flows (Meng et al., 2020)

Step 2: apply a rotation matrix to the transformed data (Jacobian is
an orthogonal matrix and is tractable)

Input After rotation

Note: N (0, I) is rotationally invariant

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 32 / 1



Gaussianization Flows (Meng et al., 2020)

Gaussianization flow: repeat Step 1 and Step 2 (stacking learnable
Gaussian copula). Transform data into a normal distribution.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 33 / 1



Experiments: Density Estimation

Density estimation on 2D datasets

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 34 / 1



Summary of Normalizing Flow Models

Transform simple distributions into more complex distributions via
change of variables

Jacobian of transformations should have tractable determinant for
efficient learning and density estimation

Computational tradeoffs in evaluating forward and inverse
transformations

Stefano Ermon (AI Lab) Deep Generative Models Lecture 8 35 / 1


