
Latent Variable Models

Stefano Ermon

Stanford University

Lecture 6

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 1 / 26

Plan for today

1 Latent Variable Models

Learning deep generative models
Stochastic optimization:

Reparameterization trick

Inference Amortization

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 2 / 26

Variational Autoencoder

A mixture of an infinite number of Gaussians:

1 z ∼ N (0, I)

2 p(x | z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

3 Even though p(x | z) is simple, the marginal p(x) is very
complex/flexible

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 3 / 26

Recap

Latent Variable Models

Allow us to define complex models p(x) in terms of simple building
blocks p(x | z)
Natural for unsupervised learning tasks (clustering, unsupervised
representation learning, etc.)
No free lunch: much more difficult to learn compared to fully observed,
autoregressive models because p(x) is hard to evaluate (and optimize)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 4 / 26

Variational inference

Suppose q(z) is any probability distribution over the hidden variables

Evidence lower bound (ELBO) holds for any q

log p(x; θ) ≥
∑
z

q(z) log

(
pθ(x, z)

q(z)

)
=

∑
z

q(z) log pθ(x, z)︸ ︷︷ ︸
Loglikelihood as if fully observed

−
∑
z

q(z) log q(z)︸ ︷︷ ︸
Entropy H(q) of q

=
∑
z

q(z) log pθ(x, z) + H(q)

Equality holds if q = p(z|x; θ)

log p(x; θ)=
∑
z

q(z) log p(z, x; θ) + H(q)

(Aside: This is what we compute in the E-step of the EM algorithm)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 5 / 26

Variational Inference

Suppose q(z) is any probability distribution over the hidden variables.
A little bit of algebra reveals

DKL(q(z)∥p(z|x; θ)) = −
∑
z

q(z) log p(z, x; θ) + log p(x; θ)− H(q) ≥ 0

Evidence lower bound (ELBO) holds for any q

log p(x; θ) ≥
∑
z

q(z) log p(z, x; θ) + H(q)

Equality holds if q = p(z|x; θ) because DKL(q(z)∥p(z|x; θ)) = 0

log p(x; θ)=
∑
z

q(z) log p(z, x; θ) + H(q)

Confirms our intuition that we seek likely completions z given the
observed values (evidence) x.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 6 / 26

Intractable Posteriors

What if the posterior p(z|x; θ) is intractable to compute? In a VAE this
corresponds to ”inverting ” the neural networks µθ,Σθ defining
p(x | z) = N (µθ(z),Σθ(z))

Suppose q(z;ϕ) is a (tractable) probability distribution over the hidden
variables parameterized by ϕ (variational parameters)

For example, a Gaussian with mean and covariance specified by ϕ

q(z;ϕ) = N (ϕ1, ϕ2)

Variational inference: pick ϕ so that q(z;ϕ) is as close as possible to
p(z|x; θ).

In the figure, the posterior p(z|x; θ) (blue) is better approximated by N (2, 2)
(orange) than N (−4, 0.75) (green)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 7 / 26

The Evidence Lower bound

log p(x; θ) ≥
∑
z

q(z;ϕ) log p(z, x; θ) + H(q(z;ϕ)) = L(x; θ, ϕ)︸ ︷︷ ︸
ELBO

log p(x; θ) = L(x; θ, ϕ) + DKL(q(z;ϕ)∥p(z|x; θ))

The better q(z;ϕ) can approximate the posterior p(z|x; θ), the smaller
DKL(q(z;ϕ)∥p(z|x; θ)) we can achieve, the closer ELBO will be to
log p(x; θ). Next: jointly optimize over θ and ϕ to maximize the ELBO
over a dataset

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 8 / 26

Variational learning

L(x; θ, ϕ1) and L(x; θ, ϕ2) are both lower bounds. We want to jointly
optimize θ and ϕ

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 9 / 26

The Evidence Lower bound applied to the entire dataset

Evidence lower bound (ELBO) holds for any q(z;ϕ)

log p(x; θ) ≥
∑
z

q(z;ϕ) log p(z, x; θ) + H(q(z;ϕ)) = L(x; θ, ϕ)︸ ︷︷ ︸
ELBO

Maximum likelihood learning (over the entire dataset):

ℓ(θ;D) =
∑
xi∈D

log p(xi ; θ) ≥
∑
xi∈D

L(xi ; θ, ϕi)

Therefore

max
θ

ℓ(θ;D) ≥ max
θ,ϕ1,··· ,ϕM

∑
xi∈D

L(xi ; θ, ϕi)

Note that we use different variational parameters ϕi for every data point xi ,
because the true posterior p(z|xi ; θ) is different across datapoints xi

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 10 / 26

A variational approximation to the posterior

Assume p(z, x; θ) is close to pdata(z, x). z denotes the top half of the image
(assumed to be latent)

Suppose q(z;ϕ) is a (tractable) probability distribution over the hidden
variables z parameterized by ϕ (variational parameters)

q(z;ϕ) =
∏

unobserved variables zi

(ϕi)
zi (1− ϕi)

(1−zi)

Is ϕi = 0.5 ∀i a good approximation to the posterior p(z|x; θ)? No

Is ϕi = 1 ∀i a good approximation to the posterior p(z|x; θ)? No

Is ϕi ≈ 1 for pixels i corresponding to the top part of digit 9 a good
approximation? Yes

Note: not true if p(z, x; θ) is far from pdata(z, x), i.e., at the beginning of
learning

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 11 / 26

Learning via stochastic variational inference (SVI)

Optimize
∑

xi∈D L(xi ; θ, ϕi) as a function of θ, ϕ1, · · · , ϕM using
(stochastic) gradient descent

L(xi ; θ, ϕi) =
∑
z

q(z;ϕi) log p(z, xi ; θ) + H(q(z;ϕi))

= Eq(z;ϕi)[log p(z, x
i ; θ)− log q(z;ϕi)]

1 Initialize θ, ϕ1, · · · , ϕM

2 Randomly sample a data point xi from D
3 Optimize L(xi ; θ, ϕi) as a function of ϕi :

1 Repeat ϕi = ϕi + η∇ϕiL(xi ; θ, ϕi)
2 until convergence to ϕi,∗ ≈ argmaxϕ L(xi ; θ, ϕ)

4 Compute ∇θL(xi ; θ, ϕi ,∗)
5 Update θ in the gradient direction. Go to step 2

How to compute the gradients? There might not be a closed form
solution for the expectations. So we use Monte Carlo sampling

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 12 / 26

Learning Deep Generative models

L(x; θ, ϕ) =
∑
z

q(z;ϕ) log p(z, x; θ) + H(q(z;ϕ))

= Eq(z;ϕ)[log p(z, x; θ)− log q(z;ϕ)]

Note: dropped i superscript from ϕi for compactness

To evaluate the bound, sample z1, · · · , zK from q(z;ϕ) and estimate

Eq(z;ϕ)[log p(z, x; θ)− log q(z;ϕ)] ≈ 1

K

∑
k

log p(zk , x; θ)− log q(zk ;ϕ))

Key assumption: q(z;ϕ) is tractable, i.e., easy to sample from and evaluate

Want to compute ∇θL(x; θ, ϕ) and ∇ϕL(x; θ, ϕ)
The gradient with respect to θ is easy

∇θEq(z;ϕ)[log p(z, x; θ)− log q(z;ϕ)] = Eq(z;ϕ)[∇θ log p(z, x; θ)]

≈ 1

K

∑
k

∇θ log p(z
k , x; θ)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 13 / 26

Learning Deep Generative models

L(x; θ, ϕ) =
∑
z

q(z;ϕ) log p(z, x; θ) + H(q(z;ϕ))

= Eq(z;ϕ)[log p(z, x; θ)− log q(z;ϕ)]

Want to compute ∇θL(x; θ, ϕ) and ∇ϕL(x; θ, ϕ)

The gradient with respect to ϕ is more complicated because the expectation
depends on ϕ

We still want to estimate with a Monte Carlo average

Later in the course we’ll see a general technique called REINFORCE (from
reinforcement learning)

For now, a better but less general alternative that only works for continuous
z (and only some distributions)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 14 / 26

Reparameterization

Want to compute a gradient with respect to ϕ of

Eq(z;ϕ)[r(z)] =

∫
q(z;ϕ)r(z)dz

where z is now continuous

Suppose q(z;ϕ) = N (µ, σ2I) is Gaussian with parameters ϕ = (µ, σ). These
are equivalent ways of sampling:

Sample z ∼ q(z;ϕ)
Sample ϵ ∼ N (0, I), z = µ+ σϵ = g(ϵ;ϕ). g is deterministic!

Using this equivalence we compute the expectation in two ways:

Ez∼q(z;ϕ)[r(z)] =

∫
q(z;ϕ)r(z)dz = Eϵ∼N (0,I)[r(g(ϵ;ϕ))] =

∫
N (ϵ)r(µ+ σϵ)dϵ

∇ϕEq(z;ϕ)[r(z)] = ∇ϕEϵ[r(g(ϵ;ϕ))] = Eϵ[∇ϕr(g(ϵ;ϕ))]

Easy to estimate via Monte Carlo if r and g are differentiable w.r.t. ϕ and ϵ
is easy to sample from (backpropagation)

Eϵ[∇ϕr(g(ϵ;ϕ))] ≈ 1
K

∑
k ∇ϕr(g(ϵ

k ;ϕ)) where ϵ1, · · · , ϵK ∼ N (0, I).

Typically much lower variance than REINFORCE

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 15 / 26

Learning Deep Generative models

L(x; θ, ϕ) =
∑
z

q(z;ϕ) log p(z, x; θ) + H(q(z;ϕ))

= Eq(z;ϕ)[log p(z, x; θ)− log q(z;ϕ)︸ ︷︷ ︸
r(z,ϕ)

]

Our case is slightly more complicated because we have Eq(z;ϕ)[r(z, ϕ)]
instead of Eq(z;ϕ)[r(z)]. Term inside the expectation also depends on ϕ.

Can still use reparameterization. Assume z = µ+ σϵ = g(ϵ;ϕ) like before.
Then

Eq(z;ϕ)[r(z, ϕ)] = Eϵ[r(g(ϵ;ϕ), ϕ)]

≈ 1

K

∑
k

r(g(ϵk ;ϕ), ϕ)

and use chain rule for the gradient.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 16 / 26

Amortized Inference

max
θ

ℓ(θ;D) ≥ max
θ,ϕ1,··· ,ϕM

∑
xi∈D

L(xi ; θ, ϕi)

So far we have used a set of variational parameters ϕi for each data
point xi . Does not scale to large datasets.

Amortization: Now we learn a single parametric function fλ that
maps each x to a set of (good) variational parameters. Like doing
regression on xi 7→ ϕi ,∗

For example, if q(z|xi) are Gaussians with different means µ1, · · · , µm,
we learn a single neural network fλ mapping xi to µi

We approximate the posteriors q(z|xi) using this distribution qλ(z|x)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 17 / 26

A variational approximation to the posterior

Assume p(z, xi ; θ) is close to pdata(z, xi). Suppose z captures information
such as the digit identity (label), style, etc.

Suppose q(z;ϕi) is a (tractable) probability distribution over the hidden
variables z parameterized by ϕi

For each xi , need to find a good ϕi,∗ (via optimization, expensive).

Amortized inference: learn how to map xi to a good set of parameters ϕi

via q(z; fλ(xi)). fλ learns how to solve the optimization problem for you

In the literature, q(z; fλ(xi)) often denoted qϕ(z|x)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 18 / 26

Learning with amortized inference

Optimize
∑

xi∈D L(xi ; θ, ϕ) as a function of θ, ϕ using (stochastic)
gradient descent

L(x; θ, ϕ) =
∑
z

qϕ(z|x) log p(z, x; θ) + H(qϕ(z|x))

= Eqϕ(z|x)[log p(z, x; θ)− log qϕ(z|x))]

1 Initialize θ(0), ϕ(0)

2 Randomly sample a data point xi from D
3 Compute ∇θL(xi ; θ, ϕ) and ∇ϕL(xi ; θ, ϕ)
4 Update θ, ϕ in the gradient direction

How to compute the gradients? Use reparameterization like before

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 19 / 26

Autoencoder perspective

L(x; θ, ϕ) = Eqϕ(z|x)[log p(z, x; θ)− log qϕ(z|x))]

= Eqϕ(z|x)[log p(z, x; θ)− log p(z) + log p(z)− log qϕ(z|x))]

= Eqϕ(z|x)[log p(x|z; θ)]− DKL(qϕ(z|x)∥p(z))

1 Take a data point xi , map it to ẑ by sampling from qϕ(z|xi) (encoder).
Sample from a Gaussian with parameters (µ, σ) = encoderϕ(xi)

2 Reconstruct x̂ by sampling from p(x|ẑ; θ) (decoder). Sample from a
Gaussian with parameters decoderθ(ẑ)

What does the training objective L(x; θ, ϕ) do?
First term encourages x̂ ≈ xi (xi likely under p(x|ẑ; θ)). Autoencoding loss!

Second term encourages ẑ to have a distribution similar to the prior p(z)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 20 / 26

Autoencoder perspective

1 Alice goes on a space mission and needs to send images to Bob.
Given an image xi , she (stochastically) compresses it using
ẑ ∼ qϕ(z|xi) obtaining a message ẑ. Alice sends the message ẑ to Bob

2 Given ẑ, Bob tries to reconstruct the image using p(x|ẑ; θ)

This scheme works well if Eqϕ(z|x)[log p(x|z; θ)] is large
The term DKL(qϕ(z|x)∥p(z)) forces the distribution over messages to
have a specific shape p(z). If Bob knows p(z), he can generate
realistic messages ẑ ∼ p(z) and the corresponding image, as if he had
received them from Alice!

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 21 / 26

Summary of Latent Variable Models

1 Combine simple models to get a more flexible one (e.g., mixture of
Gaussians)

2 Directed model permits ancestral sampling (efficient generation):
z ∼ p(z), x ∼ p(x|z; θ)

3 However, log-likelihood is generally intractable, hence learning is
difficult

4 Joint learning of a model (θ) and an amortized inference component
(ϕ) to achieve tractability via ELBO optimization

5 Latent representations for any x can be inferred via qϕ(z|x)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 22 / 26

Research Directions

Improving variational learning via:

1 Better optimization techniques

2 More expressive approximating families

3 Alternate loss functions

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 23 / 26

Model families - Encoder

Amortization (Gershman & Goodman, 2015; Kingma; Rezende; ..)

Scalability: Efficient learning and inference on massive datasets

Regularization effect: Because of joint training, it also implicitly regularizes
the model θ (Shu et al., 2018)

Augmenting variational posteriors

Monte Carlo methods: Importance Sampling (Burda et al., 2015), MCMC
(Salimans et al., 2015, Hoffman, 2017, Levy et al., 2018), Sequential Monte
Carlo (Maddison et al., 2017, Le et al., 2018, Naesseth et al., 2018),
Rejection Sampling (Grover et al., 2018)

Normalizing flows (Rezende & Mohammed, 2015, Kingma et al., 2016)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 24 / 26

Model families - Decoder

Powerful decoders p(x|z; θ) such as DRAW (Gregor et al., 2015), PixelCNN
(Gulrajani et al., 2016)

Parameterized, learned priors p(z; θ) (Nalusnick et al., 2016, Tomczak &
Welling, 2018, Graves et al., 2018)

Hierarchical models where multiple VAEs are stacked on top of each other
(Diffusion models)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 25 / 26

Variational objectives

Tighter ELBO does not imply:

Better samples: Sample quality and likelihoods are uncorrelated (Theis et
al., 2016)

Informative latent codes: Powerful decoders can ignore latent codes due to
tradeoff in minimizing reconstruction error vs. KL prior penalty (Bowman et
al., 2015, Chen et al., 2016, Zhao et al., 2017, Alemi et al., 2018)

Alternatives to KL divergence:

Renyi’s alpha-divergences (Li & Turner, 2016)

Integral probability metrics such as maximum mean discrepancy, Wasserstein
distance (Dziugaite et al., 2015; Zhao et. al, 2017; Tolstikhin et al., 2018)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 6 26 / 26

