Maximum Likelihood Learning

Stefano Ermon

Stanford University

Lecture 4

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 1/25

Learning a generative model

@ We are given a training set of examples, e.g., images of dogs

d(Pgata Po)

Pdata

6emM

Model family

@ We want to learn a probability distribution p(x) over images x such that

o Generation: If we sample Xpew ~ p(x), Xnew should look like a dog
(sampling)

o Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)

e Unsupervised representation learning: We should be able to learn
what these images have in common, e.g., ears, tail, etc. (features)

@ First question: how to represent py(x). Second question: how to learn it.

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 2/25

@ Lets assume that the domain is governed by some underlying distribution
Pdata

@ We are given a dataset D of m samples from Pgqa¢a

o Each sample is an assignment of values to (a subset of) the variables,
e.g., (Xbank = 1, Xdollar =0, ..., Y = 1) or pixel intensities.

@ The standard assumption is that the data instances are independent and
identically distributed (1I1D)

@ We are also given a family of models M, and our task is to learn some
“good” distribution in this set:

o For example, M could be all Bayes nets with a given graph structure,
for all possible choices of the CPD tables

e For example, a FVSBN for all possible choices of the logistic regression
parameters , § = concatenation of all logistic regression coefficients

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 3/25

Goal of learning

@ The goal of learning is to return a model Py that precisely captures the
distribution Pqat, from which our data was sampled

@ This is in general not achievable because of

o limited data only provides a rough approximation of the true underlying
distribution
e computational reasons

@ Example. Suppose we represent each image with a vector X of 784 binary
variables (black vs. white pixel). How many possible states (= possible
images) in the model? 278 ~ 10%3°. Even 107 training examples provide
extremely sparse coverage!

@ We want to select Py to construct the "best” approximation to the
underlying distribution Pgat,

@ What is "best"?

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 4/25

This depends on what we want to do

@ Density estimation: we are interested in the full distribution (so later we can
compute whatever conditional probabilities we want)

@ Specific prediction tasks: we are using the distribution to make a prediction

e Is this email spam or not?
e Structured prediction: Predict next frame in a video, or caption given

an image
© Structure or knowledge discovery: we are interested in the model itself

e How do some genes interact with each other?
o What causes cancer?
o Take CS 228

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 5/25

Learning as density estimation

@ We want to learn the full distribution so that later we can answer any
probabilistic inference query

@ In this setting we can view the learning problem as density estimation

@ We want to construct Py as "close” as possible to Pyata (recall we assume
we are given a dataset D of samples from Pgata.)

d(Pdata:Pﬂ)

Pdata

0eM

Model family

@ How do we evaluate "closeness” ?

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 6/25

KL-divergence

@ How should we measure distance between distributions?

@ The Kullback-Leibler divergence (KL-divergence) between two
distributions p and q is defined as

D(pllq) = Z p(x |0g

e D(p|lq) >0 for all p,q, with equality if and only if p = q. Proof:
g W] s a1)2
Cos [s 5] 2 s (e [3]) - - (Z:”()p(x)> "

o Notice that KL-divergence is asymmetric, i.e., D(p||q) # D(q||p)

@ Measures the expected number of extra bits required to describe
samples from p(x) using a compression code based on g instead of p

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 7/25

Detour on KL-divergence

@ To compress, it is useful to know the probability distribution the data
is sampled from

@ For example, let Xi,---, X190 be samples of an unbiased coin.
Roughly 50 heads and 50 tails. Optimal compression scheme is to
record heads as 0 and tails as 1. In expectation, use 1 bit per sample,
and cannot do better

@ Suppose the coin is biased, and P[H] > P[T]. Then it's more

efficient to uses fewer bits on average to represent heads and more
bits to represent tails, e.g.

e Batch multiple samples together
o Use a short sequence of bits to encode HHHH (common) and a long
sequence for TTTT (rare).
o Like Morse code: E =9, A=0—, Q = — —o—
o Kl-divergence: if your data comes from p, but you use a scheme
optimized for g, the divergence Dk (p||q) is the number of extra bits
you'll need on average

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 8/25

Learning as density estimation

@ We want to learn the full distribution so that later we can answer any
probabilistic inference query

@ In this setting we can view the learning problem as density estimation

@ We want to construct Py as "close” as possible to Pqata (recall we assume
we are given a dataset D of samples from Pyt)

@ How do we evaluate " closeness” ?

@ KL-divergence is one possibility:

Paata(x Pdata(X
D(Pdata||P0) = EXNPdata |:|0g (2)>:| Z Pdata dP@t()E))

@ D(Pgatal|Po) = 0 iff the two distributions are the same.

@ It measures the "compression loss” (in bits) of using Py instead of Pgata.

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 9/25

Expected log-likelihood

@ We can simplify this somewhat:

Paata(x)
D(PaatallPo) = Ex~Pyu [Iog (Pzt(a;()
= Exvpy... [108 Paata(X)] = Ex~py... [10g Po(x)]
@ The first term does not depend on Py.

@ Then, minimizing KL divergence is equivalent to maximizing the expected
log-likelihood

arg min D(Paata||Po) = arg min —Exp,,,, [log Po(x)] = arg max Ex~py,,, [log Po(x)]
0 0 o

o Asks that Py assign high probability to instances sampled from Pgata,
so as to reflect the true distribution
o Because of log, samples x where Py(x) = 0 weigh heavily in objective

@ Although we can now compare models, since we are ignoring
H(Pgata) = —Ex~p,.,. [108 Pdata(x)], we don't know how close we are to the
optimum

@ Problem: In general we do not know Pgata.

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 10/25

Maximum likelihood

@ Approximate the expected log-likelihood

ExPunca [l08 Po(x)]

with the empirical log-likelihood.

Ep [log Po(x)] = % S log Po(x)

@ Maximum likelihood learning is then:

1
max — log Py(x)
Py |D|);)

@ Equivalently, maximize likelihood of the data
Pg(x(l), .. ’x(m)) = HXED P@(X)

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 11/25

Main idea in Monte Carlo Estimation

© Express the quantity of interest as the expected value of a
random variable.

Eceplg(x)] =D g(x)P(x)

@ Generate T samples x!,...,x" from the distribution P with respect
to which the expectation was taken.

© Estimate the expected value from the samples using:

Eixt, o xT) 2 =Y g(x)

\'

where x!, ..., x7 are independent samples from P. Note: & is a

random variable. Why?

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 12 /25

Properties of the Monte Carlo Estimate

@ Unbiased:
Ep[g] = Ep[g(x)]

@ Convergence: By law of large numbers

;
.1 t
g = T;g(x)—) Eplg(x)] for T — oo

@ Variance:

_ Vplg(x)]

Velg] = T

~| \

Thus, variance of the estimator can be reduced by increasing the
number of samples.

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 13/25

Single variable example: A biased coin
e Two outcomes: heads (H) and tails (T)
@ Data set: Tosses of the biased coin, e.g., D={H,H, T,H, T}

@ Assumption: the process is controlled by a probability distribution
Pdata(x) where x € {H, T}

@ Class of models M: all probability distributions over x € {H, T}.

e Example learning task: How should we choose Py(x) from M if 3 out
of 5 tosses are heads in D7

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 14 /25

MLE scoring for the coin example

We represent our model: Py(x = H) =6 and Py(x=T)=1-146
e Example data: D ={H,H, T,H, T}
o Likelihood of data = [[; Pg(x;) =0-0-(1—6)-0-(1—6)

L(6:D)

0 0.2 0.4 0.6 0.8 1
0

@ Optimize for 6 which makes D most likely. What is the solution in
this case? 6 = 0.6, optimization problem can be solved in closed-form

Deep Generative Models Lecture 4 15/25

Stefano Ermon (Al Lab)

Extending the MLE principle to autoregressive models

Given an autoregressive model with n variables and factorization

PO(X) = H Pneural(Xi|x<i; ei)

i=1

6 = (01,---,0,) are the parameters of all the conditionals. Training data
D= {x ... x(M} Maximum likelihood estimate of the parameters 67?
@ Decomposition of Likelihood function

L(gaD) = H PO(X(J)) = H Hpncural(x,'(j)|xg);; 0:)
j=1 j=1i=1

e Goal : maximize arg maxy L(6, D) = arg maxg log L(6, D)

@ We no longer have a closed form solution

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 16 /25

MLE Learning: Gradient Descent

n

H P9 = H pneural 0)

j i=

Goal : maximize arg maxy L(6, D) = arg maxy log L(6, D)

0(0) = log L(0, D) Z Z log Preural (X)] (J) 1 0;)
j=1i=1
@ Initialize #° = (A1, --- ,0,) at random

@ Compute Vy/(0) (by back propagation)
Q 01 =0t + a: Vpl(0)
Non-convex optimization problem, but often works well in practice

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 17 /25

MLE Learning: Stochastic Gradient Descent

m n

0(0) = log L(0,D) = 35 log prearai(xxY); 67)

j=1 i=1
@ Initialize #° at random
@ Compute Vg/(0) (by back propagation)
Q 0t =0t + a,Vyl(0)
What is the gradient with respect to 6,7

V@,E(e) = Z Va, Z |0g pneural(x,'(j)|x(J Z V@ IOg pneural(| J) 9)
j=1 i=1

j=1

Each conditional pyeural(Xi|X<i; 6;) can be optimized separately if there is no
parameter sharing. In practice, parameters 6; are shared (e.g., NADE, PixelRNN,
PixelCNN, etc.)

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 18 /25

MLE Learning: Stochastic Gradient Descent

m

{(0) = log L(9. D) ZZ'ngneural(X x9;6)

j=1 i=1
@ Initialize 6° at random
@ Compute Vy{(0) (by back propagation)
Q 0t =0t + a,Vyl(9)

m

V9£(9 Z Z Vg log pneural(x v) |X<,v)

Jj=1i=1
What if m = |D| is huge?

ng(e) = m Z Z v@ IOg pneural é),v 0)

= mE () ~D ZV@ |0gpneura1(|(J 9)
i=1

Monte Carlo: Sample xU) ~ D; Vol(0) ~mY.!_ Vglog pncural(

|x

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4

<l'

0)

19/25

Empirical Risk and Overfitting

@ Empirical risk minimization can easily overfit the data
o Extreme example: The data is the model (remember all training data).

@ Generalization: the data is a sample, usually there is vast amount of samples
that you have never seen. Your model should generalize well to these
“never-seen” samples.

@ Thus, we typically restrict the hypothesis space of distributions that we
search over

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 20/25

Bias-Variance trade off

@ If the hypothesis space is very limited, it might not be able to represent
Pjiata, even with unlimited data

e This type of limitation is called bias, as the learning is limited on how
close it can approximate the target distribution

@ If we select a highly expressive hypothesis class, we might represent better
the data

e When we have small amount of data, multiple models can fit well, or
even better than the true model. Moreover, small perturbations on D
will result in very different estimates

e This limitation is call the variance.

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 21/25

Bias-Variance trade off

@ There is an inherent bias-variance trade off when selecting the hypothesis
class. Error in learning due to both things: bias and variance.

@ Hypothesis space: linear relationship
e Does it fit well? Underfits ’ e
@ Hypothesis space: high degree polynomial

o Overfits

@ Hypothesis space: low degree polynomial

o Right tradeoff)

(

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 22/25

How to avoid overfitting?

@ Hard constraints, e.g. by selecting a less expressive model family:

o Smaller neural networks with less parameters
o Weight sharing

d(P gatar P0)

Pdata

Xi~Pgata oem

i=12,..,n

Model family
@ Soft preference for “simpler” models: Occam Razor.
@ Augment the objective function with regularization:

objective(x, M) = loss(x, M) + R(M)

@ Evaluate generalization performance on a held-out validation set

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 23 /25

Conditional generative models

@ Suppose we want to generate a set of variables Y given some others
X, e.g., text to speech
@ We concentrate on modeling p(Y|X), and use a conditional loss
function
—log Py(y | x).

@ Since the loss function only depends on Py(y | x), suffices to estimate
the conditional distribution, not the joint

Brown horse in
grass field

Output: caption

Input : image

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 24 /25

@ For autoregressive models, it is easy to compute py(x)

o ldeally, evaluate in parallel each conditional log pneural(X,'(j)|xg),'; ;).
Not like RNNs.

Natural to train them via maximum likelihood

Higher log-likelihood doesn't necessarily mean better looking samples

Other ways of measuring similarity are possible (Generative Adversarial
Networks, GANSs)

Stefano Ermon (Al Lab) Deep Generative Models Lecture 4 25/25

