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Introduction
Dataset {x1,Z2,...,Tn} ~ Ddata

Learn py = pyata

Generate samples using py
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Continuous vs Discrete Data
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Why Discrete Data?

ChatGPT

Certainly! Below is a simple Python function that takes a list of numbers and returns a

list of running averages with a window size of 100:

(input_list):
len(input_list) <
ValueErrox(

=
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Language Model “Pretaining”: fitting a discrete probabilistic model to data.
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Why Discrete Data?

- ATTTGC

The caffeine molecule

chemical name: 1, 3, 7-trimethylxanthine
chemical formula: CgH1oN4O2

H — hydrogen atom
N — nitrogen atom
O — oxygen atom
CH3z — methyl radical

Gly Asp Tyr

Pro



Why Discrete Data?
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What makes Discrete Data Hard?

We can adapt an
existing model like
a flow or GAN!

It was the best of
times, it was the worst
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What makes Discrete Data Hard?
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What makes Discrete Data Hard?

- fd crete
—p It was the best of

times, it was the worst

—

Conclusion: our models are too reliant on calculus!



What makes Discrete Data Hard?

Let’s just embed
the tokens into a
continuous space.

14 34

Discretize

Continuous Discrete

Image > Image




What makes Discrete Data Hard?
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Best Approach So Far: Autoregressive Modeling

po(x) = po(zia? ... z%

= po(z ) po(2?]2h) . .. po(z®xta? .. 2% 1)

S = Where are we going

i |
T
Previ S words word being
text predicted




Autoregressive Modeling - Upsides

/ Scalable - each component is only a probability over D values

/Can theoretically represent any probability vector

/ Reasonably inductive bias for language



Autoregressive Modeling - Downsides

x Sampling “drifts” - Yann LeCun

x Not a reasonable bias for non-language tasks
x Constrained architectures

x Slow sampling due to iterative nature



Rethinking the Problem with Score Matching

Problem: modeling pg (X) Is extremely hard since we must sum to 1.
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V min [su(e) = Valogpl 9
F(,t) — g(t)2V. log pi)dt + g(t)dB,

dr = (
777 29277



Outline

e Score matching on discrete spaces

e Sampling using the “concrete scores”

e Evaluating likelihoods of the generative process



Outline

e Score matching on discrete spaces



Concrete Score

Viir)=1[f(y) - f(«?f)]y neighbor of x

V. logp — Vo) _ (e | _,

p(z)  |p(x)],

“Concrete Score’




Concrete Score - Example

p(x) is way too y . O(N )

. - ) is better since local: O (Nd)

We’'ll write it out assuming 1 dimension (generalization is easy).



Concrete Score - Example

331 332 xd

l Seg-to-Seq Neural Network
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Learning Concrete Scores with Score Entropy

(y)

Goal: learn a neural network Sy (:L“) s.t. Sg(x)y ~ p_
p

()

Needs to be principled (doesn’t allow negative values, recovers true value)

minE,., » s¢(x), pgz; log sg(z),

0
Y#T




Learning Concrete Scores with Score Entropy

min ( )R )

p(x)
Py
— (s p(x)lg) 0 (,_3: N
— 1_@120 -
p(x) s

Independently minimizes

for all pairs of x, v.
.- P

p(z)



Score Entropy is Intractable

Eovp Y so(z), — % log sg(x),

Y7

1. Implicit Score Entropy - analogous to implicit score matching.

2. Denoising Score Entropy - analogous to denoising score matching.



Implicit Score Entropy

By S s0(0)y — 2% log so(a),

o p(z)
Eprsz log sg(x Yy‘p 1og 89 )
v T yFa

— Epr E log Se(x)y Removed ratios,

swapped x and y
TFY

Em,\,p Z So ($>y — ]@ log 89($>y - Exr\/p Z 56 ($>y — lOg 89<y)a:

\ yFx (:c) N yFx )

Score Entropy Implicit Score Entropy




Implicit Score Entropy - Scalability

{;ajmp Z Se (aj)y — lOg S6 (y):p

Sampled
pled gy £ Evaluate So(7) Need to evaluate all sg(y)
once and
index for all Y




Denoising Score Entropy

Assume p Zp 517!330 po xo
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Denoising Score Entropy - Scalability

s ~pow~p(:

o)
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Outline

e Sampling using the “concrete scores”



Continuous Time Markov Chains

X
Diffusion is just an evolution of D¢ - R' |

dp; = Qipy

1. Columns of (); must sum to 0.

2. Non-diagonal entries of (); are > 0



Continuous Time Markov Chains

Qt controls how often one goes to other states.

P(Trsne = jloe = 0) = iy + Qu(J, 1) At + O(AE?)

Jump
transition rate
fromitoj.



Continuous Time Markov Chains - Examples
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Can check that the transition satisfies the statement.
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Continuous Time Markov Chains - Examples

= O'(t)Q “Linear ODE”"

_ Many methods to compute this matrix
pt T eXp (Z (t) Q )pO exponential (e.g. eigenvalues), but

simpler is better.

plxe = jlrg = 1) = exp(X(¢)Q)(J, 1)
t -o00 Pt —7 Pbase




Continuous Time Markov Chains - Examples

r — random
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Continuous Time Markov Chains - Examples

1. Perturb sequence by sequence

oot =yt oy Oxd)

2. Perturb tokens independently with same matrix.



Continuous Time Markov Chains + Score Entropy

Assume samples from L ™~ P(

Can we learn sy(z,t), ~ gtg;; .
pt(y‘xo)
YFx pt(z‘ajO)

Given by Qt



Reversing a Markov Chain

Assume we perturb from Po =~ Pdata to PT ~ Pbase

Can we go from P17 =~ Ppase t0 Po =~ Pdata”

dpr_y = @T—tpT—t

= [ _pt(j) i
Qt(]vl) _ pt(i) Qt( 7])

Diagonal values normalized so that the matrix is a valid diffusion matrix.




Reverse Markov Chains + Concrete Scores

=/ - _Pt(j) X
Qt(27j) — pt(l) Qt(]7 )

Qt(ja 7/) ~ SH(ia t)]Qt(Zvj)

Compute Sg (i, t)

[ o 1 2 3




Reversing a Markov Chain - Examples

0.5
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Reversing a Markov Chain - Examples

study ants bear burrito Stanford song

MASK MASK MASK MASK MASK MASK



Accelerating Sampling with Discretization

Problem: reverse is very slow!
1 ) 1 ' d
L L S L L
Only one token can change at a time.

Solution: allow multiple steps.

It was the MASK of MASK -> It was the best of times



Putting it all together

1. Get samples from desired data distribution
2. Define a forward diffusion process

3. Learn ratios using Score Entropy

4. Reverse diffusion process (possibly with some discretization).



Putting it all together

Wyman worked as a computer science coach before going to work with the U.S. Secret
Service in upstate New York in 2010. Without a license, the Secret Service will have to
oversee both the analysts on the software.

“I see this as going to be a matter of choice, but it has been a long road,” said Mark McSmith,
who specializes in the management of data privacy in the National Security Administration.
That includes similar uncertainty about what software must be followed and confidentiality
rules under the Espionage Act.

Though the software only takes about four years, he said, for the government to get a license
for it, it could take after a federal employee spent a while.

“I think I had to read a lot that nobody was telling the Justice Department about it,” he
said, adding that “I would guess that it was acquired more recently.” But the company
lobbied the feds so it could instead oversee its project using a government arm, because of
the Bureau of Law.

Do denied the inquiry, and said it made numerous attempts to be in compliance.

“If they’ve requested to do it and they're still not doing it, don’t consider there an artificial
interest here,” said Flavio Witeli, an agency lawyer, who focuses in cybersecurity law.

To help with Do and Co’s troubles, employees find themselves retraining from software
products.



Putting it all together

Members of the prefabricated
surplus yard placemat board of
Metrolinx designated reserved land
located next to Vectverified. . .

SEDD-A | GPT-2

As Jeff Romer recently wrote, "The
economy has now reached a corner -
64% of household wealth and 80% of
wealth goes to credit cards because
of government austerity ...

SEDD-U

The pledge itself is an offer from the
government, but the oil panhandlers
is taking some of the proposed cost
to the system of utilities in place ...

Generative Perplexity

2 x10?

102 4

6x 10!

4 x 10!

Generative Perplexity vs Iterations.

—e— SEDD-A Small *
SEDD-A Medium
* GPT-2 Small
GPT-2 Medium

102 103

Number of Network Evaluations

Surpasses autoregressive transformers for generation quality/speed!




Conditional Generation (Prompt Infilling)

A bow and arrow is a traditional weapon used by penury Englishmen. The gun
shoots into water, starvation and thunder centuries after short-range weapons were
built. The weapon is the focus of a new exhibition Dr Tom Fellow, from Pcock, is
curator of objects at the History Museum in Oxford. ...

. seems to have known skydiving is a fun sport that exists, in other words, sublimi-
nally like climbing the feeling is exhilarating. Watson is beginning to wonder, as their
conversation on it continues, why not. “One thing springs to mind,” she says. ...

. with significantly lower skin infections. Also this year a Franklin study published
a report that found that with more use of reliable medical data, monthly changes
following a nutritional boost could have a devastating stay in school kids.

. as if he could have been erred, (Donald Trump and Hillary Clinton started to
change their position. Some, as Tom and Perez mentioned, were good specifics, such
as where they have a letter the FFP agents give their way to pass to offsetting ...




Outline

e Evaluating likelihoods of the generative process



Perplexity

PPL(:):) — 6_% log pg (x'...x%)

~ Principled measurement of model ability

/ Directly computable for autoregressive modeling

/ Optimized w/ standard cross entropy loss



Computing Likelihood Bounds

¢ T
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(Weighted) version of score entropy.

PPL(z) < e"aPSE@)



Computing Likelihood Bounds

LAMBADA WikiText2 PTB WikiText103 1BW
GPT-2-small 45.04 42.43 138.43 41.60 75.20*
SEDD-small Absorb <5221 <44.75 <130.49 <43.14 <80.70
SEDD-small Uniform <66.94 <55.88 <144.88 <53.90 <100.86
GPT-2-medium 35.66 31.80 123.14 31.39 55.72*
SEDD-medium Absorb <44.60 <34.85 <93.26 <3297 <67.91
SEDD-medium Uniform <51.14 <39.79 <100.58 <37.69 <79.26

Challenges autoregressive modeling on perplexities!



Summary

e Itis hard to build probabilistic models for discrete space.
o Autoregressive modeling has been (basically) the only paradigm
e Score based models extend to discrete spaces
o Model the ratios of the data distribution (concrete scores)
o  Optimize Score Entropy loss (+ extensions)
e Sample using discrete diffusion processes
o Synergizes with Denoising Score Entropy loss
o Fast and controllable generation
o Generation quality surpasses autoregressive models
e Score Entropy forms a likelihood bound.

o Challenges autoregressive dominance



