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Introduction



Continuous vs Discrete Data



Why Discrete Data?

Language Model “Pretaining”: fitting a discrete probabilistic model to data.



Why Discrete Data?



Why Discrete Data?

VQVAE backbone

From recent Google/CMU 
MAGVIT-v2 paper

More Discrete
More Continuous



What makes Discrete Data Hard?

We can adapt an 
existing model like 

a flow or GAN!



What makes Discrete Data Hard?

2o5sS7GJQrdqMLh8 It was the best of times.



What makes Discrete Data Hard?

Discriminator

Conclusion: our models are too reliant on calculus!



What makes Discrete Data Hard?

Let’s just embed 
the tokens into a 

continuous space.

Continuous 
Image

Discrete 
Image

Discretize



What makes Discrete Data Hard?

The
times

worst

of



Best Approach So Far: Autoregressive Modeling



Autoregressive Modeling - Upsides

Scalable - each component is only a probability over D values

Can theoretically represent any probability vector

Reasonably inductive bias for language



Autoregressive Modeling - Downsides

Sampling “drifts” - Yann LeCun

Not a reasonable bias for non-language tasks

Constrained architectures

Slow sampling due to iterative nature



Rethinking the Problem with Score Matching

Problem: modeling             is extremely hard since we must sum to 1.



Outline

● Score matching on discrete spaces

● Sampling using the “concrete scores”

● Evaluating likelihoods of the generative process



Outline

● Score matching on discrete spaces

● Sampling using the “concrete scores”

● Evaluating likelihoods of the generative process



Concrete Score

“Concrete Score”



Concrete Score - Example

is way too many ratios:

is better since local:

We’ll write it out assuming 1 dimension (generalization is easy).



Concrete Score - Example

…

…

…

… …

…

Seq-to-Seq Neural Network



Learning Concrete Scores with Score Entropy

Goal: learn a neural network    s.t.

Needs to be principled (doesn’t allow negative values, recovers true value) 



Learning Concrete Scores with Score Entropy

Independently minimizes 
for all pairs of x, y.



Score Entropy is Intractable

1. Implicit Score Entropy - analogous to implicit score matching.

2. Denoising Score Entropy - analogous to denoising score matching.



Implicit Score Entropy

Removed ratios, 
swapped x and y



Implicit Score Entropy - Scalability

Sampled
Evaluate 
once and 
index for all 

Need to evaluate all



Denoising Score Entropy

Assume



Denoising Score Entropy - Scalability

Sampled Sampled
ComputableCompute

once



Outline

● Score matching on discrete spaces

● Sampling using the “concrete scores”

● Evaluating likelihoods of the generative process



Continuous Time Markov Chains

Diffusion is just an evolution of 

1. Columns of        must sum to 0.

2. Non-diagonal entries of        are 



Continuous Time Markov Chains

Jump 
transition rate 
from i to j.

controls how often one goes to other states.



Continuous Time Markov Chains - Examples

Can check that the transition satisfies the statement.



Continuous Time Markov Chains - Examples

“Linear ODE”

Many methods to compute this matrix 
exponential (e.g. eigenvalues), but 
simpler is better.



Continuous Time Markov Chains - Examples



Continuous Time Markov Chains - Examples

2. Perturb tokens independently with same matrix. 

1. Perturb sequence by sequence



Continuous Time Markov Chains + Score Entropy

Assume samples from  

Can we learn        ?

Given by



Reversing a Markov Chain

Assume we perturb from       to   

Can we go from       to                      ?  

Diagonal values normalized so that the matrix is a valid diffusion matrix.



Reverse Markov Chains + Concrete Scores

i

Compute 
1 2 3 N…



Reversing a Markov Chain - Examples



Reversing a Markov Chain - Examples 



Accelerating Sampling with Discretization

Problem: reverse is very slow!

It was the MASK of MASK -> It was the best of times

Solution: allow multiple steps.

Only one token can change at a time.



Putting it all together

1. Get samples from desired data distribution 

2. Define a forward diffusion process

3. Learn ratios using Score Entropy

4. Reverse diffusion process (possibly with some discretization).



Putting it all together



Putting it all together

Surpasses autoregressive transformers for generation quality/speed!



Conditional Generation (Prompt Infilling)



Outline

● Score matching on discrete spaces

● Sampling using the “concrete scores”

● Evaluating likelihoods of the generative process



Perplexity

Principled measurement of model ability

Optimized w/ standard cross entropy loss

Directly computable for autoregressive modeling



Computing Likelihood Bounds

(Weighted) version of score entropy.



Computing Likelihood Bounds

Challenges autoregressive modeling on perplexities!



Summary

● It is hard to build probabilistic models for discrete space.
○ Autoregressive modeling has been (basically) the only paradigm

● Score based models extend to discrete spaces
○ Model the ratios of the data distribution (concrete scores)
○ Optimize Score Entropy loss (+ extensions)

● Sample using discrete diffusion processes
○ Synergizes with Denoising Score Entropy loss
○ Fast and controllable generation
○ Generation quality surpasses autoregressive models 

● Score Entropy forms a likelihood bound.
○ Challenges autoregressive dominance


