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Summary

Story so far

Representation: Latent variable vs. fully observed

Objective function and optimization algorithm: Many divergences and
distances optimized via likelihood-free (two sample test) or likelihood
based methods (KL divergence)

Each have Pros and Cons

Plan for today: Combining models

Stefano Ermon, Yang Song (AI Lab) Deep Generative Models Lecture 16 2 / 19



Variational Autoencoder

A mixture of an infinite number of Gaussians:

1 z � N (0; I )

2 p(x j z) = N (��(z);Σ�(z)) where ��,Σ� are neural networks

3 p(x j z) and p(z) usually simple, e.g., Gaussians or conditionally
independent Bernoulli vars (i.e., pixel values chosen independently
given z)

4 Idea: increase complexity using an autoregressive model
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PixelVAE (Gulrajani et al.,2017)

z is a feature map with the same resolution as the image x

Autoregressive structure: p(x j z) =
Q

i p(xi j x1; � � � ; xi�1; z)

p(x j z) is a PixelCNN
Prior p(z) can also be autoregressive

Learns features (unlike PixelCNN); computationally cheaper than PixelCNN
(shallower)

Stefano Ermon, Yang Song (AI Lab) Deep Generative Models Lecture 16 4 / 19



Autoregressive flow
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Flow model, the marginal likelihood p(x) is given by
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where pZ (z) is typically simple (e.g., a Gaussian). More complex
prior?

Prior pZ (z) can be autoregressive pZ (z) =
Q

i p(zi j z1; � � � ; zi�1).

Autoregressive models are flows. Just another MAF layer.

See also neural autoregressive flows (Huang et al., ICML-18)
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VAE + Flow Model
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q(zjx;�) log p(z; x; �) + H(q(zjx;�)) = L(x; �; �)| {z }
ELBO

log p(x; �) = L(x; �; �) + DKL(q(z j x;�)kp(zjx; �))| {z }
Gap between true log-likelihood and ELBO

q(zjx;�) is often too simple (Gaussian) compared to the true
posterior p(zjx; �), hence ELBO bound is loose

Idea: Make posterior more flexible: z0 � q(z0jx;�), z = f�0(z
0) for an

invertible f�0 (Rezende and Mohamed, 2015; Kingma et al., 2016)

Still easy to sample from, and can evaluate density.
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VAE + Flow Model

Posterior approximation is more flexible, hence we can get tighter ELBO
(closer to true log-likelihood).
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