
Energy-Based Models

Stefano Ermon

Stanford University

Lecture 11

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 1 / 1

Recap.

Autoregressive models. pθ(x1, x2, · · · , xn) =
∏n

i=1 pθ(xi | x<i)

Normalizing flow models. pθ(x) = p(z)| det Jfθ(x)|, where z = fθ(x).

Variational autoencoders: pθ(x) =
∫
p(z)pθ(x | z)dz.

Cons: Model architectures are restricted.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 2 / 1

Recap.

Generative Adversarial Networks (GANs).

minθ maxϕ Ex∼pdata [logDϕ(x)] + Ez∼p(z)[log(1− Dϕ(Gθ(z)))].
Two sample tests. Can (approximately) optimize f -divergences and the
Wasserstein distance.
Very flexible model architectures. But likelihood is intractable, training
is unstable, hard to evaluate, and has mode collapse issues.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 3 / 1

Today’s lecture

Energy-based models (EBMs).

Very flexible model architectures.

Stable training.

Relatively high sample quality.

Flexible composition.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 4 / 1

Parameterizing probability distributions

Probability distributions p(x) are a key building block in generative
modeling.

1 non-negative: p(x) ≥ 0

2 sum-to-one:
∑

x p(x) = 1 (or
∫
p(x)dx = 1 for continuous variables)

Coming up with a non-negative function pθ(x) is not hard.
Given any function fθ(x), we can choose

gθ(x) = fθ(x)
2

gθ(x) = exp(fθ(x))

gθ(x) = |fθ(x)|
gθ(x) = log(1 + exp(fθ(x)))

etc.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 5 / 1

Parameterizing probability distributions

Probability distributions p(x) are a key building block in generative
modeling.

1 non-negative: p(x) ≥ 0
2 sum-to-one:

∑
x p(x) = 1 (or

∫
p(x)dx = 1 for continuous variables)

Sum-to-one is key:

Total “volume” is fixed: increasing p(xtrain) guarantees that xtrain becomes
relatively more likely (compared to the rest).
Problem:

gθ(x) ≥ 0 is easy, but gθ(x) might not sum-to-one.∑
x gθ(x) = Z (θ) ̸= 1 in general, so gθ(x) is not a valid probability

mass function or density (for continuous case,
∫
gθ(x)dx ̸= 1)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 6 / 1

Parameterizing probability distributions

Problem: gθ(x) ≥ 0 is easy, but gθ(x) might not be normalized
Solution:

pθ(x) =
1

Z (θ)
gθ(x) =

1∫
gθ(x)dx

gθ(x) =
1

Volume(gθ)
gθ(x)

Then by definition,
∫
pθ(x)dx =

∫ gθ(x)
Z(θ) dx = Z(θ)

Z(θ) = 1.

Example: choose gθ(x) so that we know the volume analytically as a
function of θ.

1 g(µ,σ)(x) = e−
(x−µ)2

2σ2 . Volume is:
∫
e−

x−µ

2σ2 dx =
√
2πσ2. → Gaussian

2 gλ(x) = e−λx . Volume is:
∫ +∞
0 e−λxdx = 1

λ . → Exponential
3 gθ(x) = h(x) exp{θ · T (x)}. Volume is exp{A(θ)}, where

A(θ) = log
∫
h(x) exp{θ · T (x)}dx. → Exponential family

Normal, Poisson, exponential, Bernoulli
beta, gamma, Dirichlet, Wishart, etc.

Function forms gθ(x) need to allow analytical integration. Despite being
restrictive, they are very useful as building blocks for more complex
distributions.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 7 / 1

Likelihood based learning

Problem: gθ(x) ≥ 0 is easy, but gθ(x) might not be normalized
Solution:

pθ(x) =
1

Volume(gθ)
gθ(x) =

1∫
gθ(x)dx

gθ(x) =
1

Z (θ)
gθ(x)

Typically, choose gθ(x) so that we know the volume analytically. More complex
models can be obtained by combining these building blocks.

1 Autoregressive: Products of normalized objects pθ(x)pθ′(x)(y):∫
x

∫
y pθ(x)pθ′(x)(y)dxdy =

∫
x pθ(x)

∫
y

pθ′(x)(y)dy︸ ︷︷ ︸
=1

dx =
∫
x pθ(x)dx = 1

2 Latent variables: Mixtures of normalized objects αpθ(x) + (1− α)pθ′(x) :∫
x αpθ(x) + (1− α)pθ′(x)dx = α+ (1− α) = 1

How about using models where the “volume”/normalization constant of gθ(x) is
not easy to compute analytically?

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 8 / 1

Energy-based model

pθ(x) =
1∫

exp(fθ(x))dx
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

The volume/normalization constant

Z (θ) =

∫
exp(fθ(x))dx

is also called the partition function. Why exponential (and not e.g. fθ(x)2)?

1 Want to capture very large variations in probability. log-probability is the
natural scale we want to work with. Otherwise need highly non-smooth fθ.

2 Exponential families. Many common distributions can be written in this
form.

3 These distributions arise under fairly general assumptions in statistical
physics (maximum entropy, second law of thermodynamics).

−fθ(x) is called the energy, hence the name.
Intuitively, configurations x with low energy (high fθ(x)) are more likely.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 9 / 1

Energy-based model

pθ(x) =
1∫

exp(fθ(x))dx
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

Pros:

1 extreme flexibility: can use pretty much any function fθ(x) you want

Cons:

1 Sampling from pθ(x) is hard

2 Evaluating and optimizing likelihood pθ(x) is hard (learning is hard)

3 No feature learning (but can add latent variables)

Curse of dimensionality: The fundamental issue is that computing Z (θ)
numerically (when no analytic solution is available) scales exponentially in
the number of dimensions of x.
Nevertheless, some tasks do not require knowing Z (θ)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 10 / 1

Applications of Energy-based models

pθ(x) =
1∫

exp(fθ(x))dx
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

Given x, x′ evaluating pθ(x) or pθ(x′) requires Z (θ).

However, their ratio

pθ(x)

pθ(x′)
= exp(fθ(x)− fθ(x

′))

does not involve Z (θ).

This means we can easily check which one is more likely. Applications:

1 anomaly detection
2 denoising

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 11 / 1

Applications of Energy-based models

E(Y, X)

X Y

E(Y, X)

X Y

E(Y, X)

X Y

cat

object recognition sequence labeling image restoration

“class” noun

Given a trained model, many applications require relative comparisons. Hence
Z (θ) is not needed.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 12 / 1

Example: Ising Model

There is a true image y ∈ {0, 1}3×3, and a corrupted image x ∈ {0, 1}3×3.
We know x, and want to somehow recover y.

Y1

X1

Y2

X2

Y3

X3

Y7

X7

Y4

X4

Y5

X5

Y6

X6

Y8

X8

Y9

X9

Xi: noisy pixels
Yi: “true” pixels

Markov Random Field

We model the joint probability distribution p(y, x) as

p(y, x) =
1

Z
exp

∑
i

ψi (xi , yi) +
∑

(i,j)∈E

ψij (yi , yj)


ψi (xi , yi): the i-th corrupted pixel depends on the i-th original pixel
ψij(yi , yj): neighboring pixels tend to have the same value

How did the original image y look like? Solution: maximize p(y|x). Or
equivalently, maximize p(y, x).

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 13 / 1

Example: Product of Experts

Suppose you have trained several models qθ1(x), rθ2(x), tθ3(x). They
can be different models (PixelCNN, Flow, etc.)

Each one is like an expert that can be used to score how likely an
input x is.

Assuming the experts make their judgments indpendently, it is
tempting to ensemble them as

pθ1(x)qθ2(x)rθ3(x)

To get a valid probability distribution, we need to normalize

pθ1,θ2,θ3(x) =
1

Z (θ1, θ2, θ3)
qθ1(x)rθ2(x)tθ3(x)

Note: similar to an AND operation (e.g., probability is zero as long as
one model gives zero probability), unlike mixture models which
behave more like OR

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 14 / 1

Example: Product of Experts

Image source: Du et al., 2020.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 15 / 1

Example: Restricted Boltzmann machine (RBM)

RBM: energy-based model with latent variables

Two types of variables:

1 x ∈ {0, 1}n are visible variables (e.g., pixel values)
2 z ∈ {0, 1}m are latent ones

The joint distribution is

pW ,b,c(x, z) =
1

Z
exp

(
xTW z+ bx+ cz

)
=

1

Z
exp

(
n∑

i=1

m∑
j=1

xizjwij + bx+ cz

)

Visible units

Hidden units

Restricted because there are no visible-visible and hidden-hidden
connections, i.e., xixj or zizj terms in the objective

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 16 / 1

Example: Deep Boltzmann Machines

Stacked RBMs are one of the first deep generative models:

Deep Boltzmann machine

v

h(3)

h(2)

h(1)

W(3)

W(2)

W(1)

Bottom layer variables v are pixel values. Layers above (h) represent
“higher-level” features (corners, edges, etc).

Early deep neural networks for supervised learning had to be
pre-trained like this to make them work.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 17 / 1

Deep Boltzmann Machines: samples

Image source: Salakhutdinov and Hinton, 2009.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 18 / 1

Energy-based models: learning and inference

pθ(x) =
1∫

exp(fθ(x))
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

Pros:

1 can plug in pretty much any function fθ(x) you want

Cons (lots of them):

1 Sampling is hard

2 Evaluating likelihood (learning) is hard

3 No feature learning

Curse of dimensionality: The fundamental issue is that computing Z (θ)
numerically (when no analytic solution is available) scales exponentially in
the number of dimensions of x.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 19 / 1

Computing the normalization constant is hard

As an example, the RBM joint distribution is

pW ,b,c(x, z) =
1

Z
exp

(
xTW z+ bx+ cz

)
where

1 x ∈ {0, 1}n are visible variables (e.g., pixel values)
2 z ∈ {0, 1}m are latent ones

The normalization constant (the “volume”) is

Z (W , b, c) =
∑

x∈{0,1}n

∑
z∈{0,1}m

exp
(
xTW z+ bx+ cz

)
Note: it is a well defined function of the parameters W , b, c , but no
simple closed-form. Takes time exponential in n,m to compute. This
means that evaluating the objective function pW ,b,c(x, z) for
likelihood based learning is hard.
Observation: Optimizing the likelihood pW ,b,c(x, z) is difficult, but
optimizing the un-normalized probability exp

(
xTW z+ bx+ cz

)
(w.r.t. trainable parameters W , b, c) is easy.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 20 / 1

Training intuition

Goal: maximize exp{fθ(xtrain)}
Z(θ) . Increase numerator, decrease denominator.

Intuition: because the model is not normalized, increasing the
un-normalized log-probability fθ(xtrain) by changing θ does not guarantee
that xtrain becomes relatively more likely (compared to the rest).

We also need to take into account the effect on other “wrong points” and
try to “push them down” to also make Z (θ) small.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 21 / 1

Contrastive Divergence

Goal: maximize exp{fθ(xtrain)}
Z(θ)

Idea: Instead of evaluating Z (θ) exactly, use a Monte Carlo estimate.

Contrastive divergence algorithm: sample xsample ∼ pθ, take step on
∇θ (fθ(xtrain)− fθ(xsample)). Make training data more likely than typical
sample from the model.

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 22 / 1

Contrastive Divergence

Maximize log-likelihood: maxθ fθ(xtrain)− logZ (θ).

Gradient of log-likelihood:

∇θfθ(xtrain)−∇θ logZ (θ)

= ∇θfθ(xtrain)− ∇θZ(θ)
Z(θ)

= ∇θfθ(xtrain)− 1
Z(θ)

∫
∇θ exp{fθ(x)}dx

= ∇θfθ(xtrain)− 1
Z(θ)

∫
exp{fθ(x)}∇θfθ(x)dx

= ∇θfθ(xtrain)−
∫ exp{fθ(x)}

Z(θ) ∇θfθ(x)dx

= ∇θfθ(xtrain)− Exsample
[∇θfθ(xsample)]

≈ ∇θfθ(xtrain)−∇θfθ(xsample),

where xsample ∼ exp{fθ(xsample)}/Z (θ).
How to sample?

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 23 / 1

Sampling from energy-based models

pθ(x) =
1∫

exp(fθ(x))
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

No direct way to sample like in autoregressive or flow models. Main
issue: cannot easily compute how likely each possible sample is

However, we can easily compare two samples x, x′.

Use an iterative approach called Markov Chain Monte Carlo:
1 Initialize x0 randomly, t = 0
2 Let x ′ = x t + noise

1 If fθ(x
′) > fθ(x

t), let x t+1 = x ′

2 Else let x t+1 = x ′ with probability exp(fθ(x
′)− fθ(x

t))

3 Go to step ??

Works in theory, but can take a very long time to converge

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 24 / 1

Sampling from energy-based models

For any continuous distribution pθ(x), suppose we can compute its
gradient (the score function) ∇x log pθ(x).

Let π(x) be a prior distribution that is easy to sample from.

Langevin MCMC.

x0 ∼ π(x)
Repeat xt+1 ∼ xt + ϵ ∇x log pθ(xt) +

√
2ϵ zt for t = 0, 1, 2, · · · ,T − 1,

where zt ∼ N (0, I).
If ϵ→ 0 and T → ∞, we have xT ∼ pθ(x).

Note that for energy-based models, the score function is tractable

∇x log pθ(x) = ∇xfθ(x)−∇x logZ (θ)︸ ︷︷ ︸
=0

= ∇xfθ(x)

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 25 / 1

Modern energy-based models

Langevin sampling

Face samples

Image source: Nijkamp et al. 2019
Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 26 / 1

Modern energy-based models

ImageNet samples

Image source: Du et al., 2019

Stefano Ermon (AI Lab) Deep Generative Models Lecture 11 27 / 1

