Energy-Based Models

Stefano Ermon

Stanford University

Lecture 11

- Autoregressive models. $p_{\theta}(x_1, x_2, \cdots, x_n) = \prod_{i=1}^n p_{\theta}(x_i \mid x_{< i})$
- Normalizing flow models. $p_{\theta}(\mathbf{x}) = p(\mathbf{z}) |\det J_{f_{\theta}}(\mathbf{x})|$, where $\mathbf{z} = f_{\theta}(\mathbf{x})$.
- Variational autoencoders: $p_{\theta}(\mathbf{x}) = \int p(\mathbf{z}) p_{\theta}(\mathbf{x} \mid \mathbf{z}) d\mathbf{z}$.

Cons: Model architectures are restricted.

- Generative Adversarial Networks (GANs).
 - $\min_{\theta} \max_{\phi} E_{\mathbf{x} \sim p_{\text{data}}}[\log D_{\phi}(\mathbf{x})] + E_{\mathbf{z} \sim p(\mathbf{z})}[\log(1 D_{\phi}(G_{\theta}(\mathbf{z})))].$
 - Two sample tests. Can (approximately) optimize *f*-divergences and the Wasserstein distance.
 - Very flexible model architectures. But likelihood is intractable, training is unstable, hard to evaluate, and has mode collapse issues.

Energy-based models (EBMs).

- Very flexible model architectures.
- Stable training.
- Relatively high sample quality.
- Flexible composition.

Probability distributions p(x) are a key building block in generative modeling.

• non-negative:
$$p(x) \ge 0$$

2 sum-to-one: $\sum_{x} p(x) = 1$ (or $\int p(x) dx = 1$ for continuous variables) Coming up with a non-negative function $p_{\theta}(\mathbf{x})$ is not hard.

Given any function $f_{\theta}(\mathbf{x})$, we can choose

•
$$g_{ heta}(\mathbf{x}) = f_{ heta}(\mathbf{x})^2$$

•
$$g_{\theta}(\mathbf{x}) = \exp(f_{\theta}(\mathbf{x}))$$

•
$$g_{ heta}(\mathbf{x}) = |f_{ heta}(\mathbf{x})|$$

•
$$g_{\theta}(\mathbf{x}) = \log(1 + \exp(f_{\theta}(\mathbf{x})))$$

• etc.

Parameterizing probability distributions

Probability distributions $p(\mathbf{x})$ are a key building block in generative modeling.

1 non-negative: $p(\mathbf{x}) \ge 0$

② sum-to-one: $\sum_{\mathbf{x}} p(\mathbf{x}) = 1$ (or $\int p(\mathbf{x}) d\mathbf{x} = 1$ for continuous variables) Sum-to-one is key:

Total "volume" is fixed: increasing $p(x_{train})$ guarantees that x_{train} becomes relatively more likely (compared to the rest).

Problem:

- $g_{\theta}(\mathbf{x}) \geq 0$ is easy, but $g_{\theta}(\mathbf{x})$ might not sum-to-one.
- $\sum_{\mathbf{x}} g_{\theta}(\mathbf{x}) = Z(\theta) \neq 1$ in general, so $g_{\theta}(\mathbf{x})$ is not a valid probability mass function or density (for continuous case, $\int g_{\theta}(\mathbf{x}) d\mathbf{x} \neq 1$)

Parameterizing probability distributions

Problem: $g_{\theta}(\mathbf{x}) \ge 0$ is easy, but $g_{\theta}(\mathbf{x})$ might not be normalized **Solution**:

$$p_{ heta}(\mathbf{x}) = rac{1}{Z(heta)} g_{ heta}(\mathbf{x}) = rac{1}{\int g_{ heta}(\mathbf{x}) \mathrm{d}\mathbf{x}} g_{ heta}(\mathbf{x}) = rac{1}{Volume(g_{ heta})} g_{ heta}(\mathbf{x})$$

Then by definition, $\int p_{\theta}(\mathbf{x}) d\mathbf{x} = \int \frac{g_{\theta}(\mathbf{x})}{Z(\theta)} d\mathbf{x} = \frac{Z(\theta)}{Z(\theta)} = 1$. **Example**: choose $g_{\theta}(\mathbf{x})$ so that we know the volume *analytically* as a function of θ .

•
$$g_{(\mu,\sigma)}(x) = e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
. Volume is: $\int e^{-\frac{x-\mu}{2\sigma^2}} dx = \sqrt{2\pi\sigma^2}$. \rightarrow Gaussian
 $g_{\lambda}(x) = e^{-\lambda x}$. Volume is: $\int_{0}^{+\infty} e^{-\lambda x} dx = \frac{1}{\lambda}$. \rightarrow Exponential
 $g_{\theta}(x) = h(x) \exp\{\theta \cdot T(x)\}$. Volume is $\exp\{A(\theta)\}$, where
 $A(\theta) = \log \int h(x) \exp\{\theta \cdot T(x)\} dx$. \rightarrow Exponential family
• Normal, Poisson, exponential, Bernoulli
• beta, gamma, Dirichlet, Wishart, etc.

Function forms $g_{\theta}(\mathbf{x})$ need to allow *analytical* integration. Despite being restrictive, they are very useful as building blocks for more complex distributions.

Likelihood based learning

Problem: $g_{\theta}(\mathbf{x}) \geq 0$ is easy, but $g_{\theta}(\mathbf{x})$ might not be normalized **Solution**:

$$p_{ heta}(\mathbf{x}) = rac{1}{Volume(g_{ heta})}g_{ heta}(\mathbf{x}) = rac{1}{\int g_{ heta}(\mathbf{x})d\mathbf{x}}g_{ heta}(\mathbf{x}) = rac{1}{Z(heta)}g_{ heta}(\mathbf{x})$$

Typically, choose $g_{\theta}(\mathbf{x})$ so that we know the volume *analytically*. More complex models can be obtained by combining these building blocks.

• Autoregressive: Products of normalized objects $p_{\theta}(\mathbf{x})p_{\theta'(\mathbf{x})}(\mathbf{y})$: $\int_{\mathbf{x}} \int_{\mathbf{y}} p_{\theta}(\mathbf{x})p_{\theta'(\mathbf{x})}(\mathbf{y}) d\mathbf{x} d\mathbf{y} = \int_{\mathbf{x}} p_{\theta}(\mathbf{x}) \underbrace{\int_{\mathbf{y}} p_{\theta'(\mathbf{x})}(\mathbf{y}) d\mathbf{y}}_{=1} d\mathbf{x} = \int_{\mathbf{x}} p_{\theta}(\mathbf{x}) d\mathbf{x} = 1$

2 Latent variables: Mixtures of normalized objects $\alpha p_{\theta}(\mathbf{x}) + (1 - \alpha)p_{\theta'}(\mathbf{x}) : \int_{\mathbf{x}} \alpha p_{\theta}(\mathbf{x}) + (1 - \alpha)p_{\theta'}(\mathbf{x}) d\mathbf{x} = \alpha + (1 - \alpha) = 1$

How about using models where the "volume"/normalization constant of $g_{\theta}(\mathbf{x})$ is not easy to compute analytically?

Energy-based model

$$p_{\theta}(\mathbf{x}) = \frac{1}{\int \exp(f_{\theta}(\mathbf{x})) d\mathbf{x}} \exp(f_{\theta}(\mathbf{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\mathbf{x}))$$

The volume/normalization constant

$$Z(heta) = \int \exp(f_ heta(\mathbf{x})) d\mathbf{x}$$

is also called the partition function. Why exponential (and not e.g. $f_{\theta}(\mathbf{x})^2$)?

- Want to capture very large variations in probability. log-probability is the natural scale we want to work with. Otherwise need highly non-smooth f_{θ} .
- Exponential families. Many common distributions can be written in this form.
- These distributions arise under fairly general assumptions in statistical physics (maximum entropy, second law of thermodynamics).
 - $-f_{\theta}(\mathbf{x})$ is called the **energy**, hence the name.
 - Intuitively, configurations **x** with low energy (high $f_{\theta}(\mathbf{x})$) are more likely.

$$p_{\theta}(\mathbf{x}) = \frac{1}{\int \exp(f_{\theta}(\mathbf{x})) \mathrm{d}\mathbf{x}} \exp(f_{\theta}(\mathbf{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\mathbf{x}))$$

Pros:

• extreme flexibility: can use pretty much any function $f_{\theta}(\mathbf{x})$ you want Cons:

- Sampling from $p_{\theta}(\mathbf{x})$ is hard
- **2** Evaluating and optimizing likelihood $p_{\theta}(\mathbf{x})$ is hard (learning is hard)

So feature learning (but can add latent variables)

Curse of dimensionality: The fundamental issue is that computing $Z(\theta)$ numerically (when no analytic solution is available) scales exponentially in the number of dimensions of **x**.

Nevertheless, some tasks do not require knowing $Z(\theta)$

Applications of Energy-based models

$$p_{\theta}(\mathbf{x}) = \frac{1}{\int \exp(f_{\theta}(\mathbf{x})) d\mathbf{x}} \exp(f_{\theta}(\mathbf{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\mathbf{x}))$$

- Given **x**, **x**' evaluating $p_{\theta}(\mathbf{x})$ or $p_{\theta}(\mathbf{x}')$ requires $Z(\theta)$.
- However, their ratio

$$\frac{p_{\theta}(\mathbf{x})}{p_{\theta}(\mathbf{x}')} = \exp(f_{\theta}(\mathbf{x}) - f_{\theta}(\mathbf{x}'))$$

does not involve $Z(\theta)$.

• This means we can easily check which one is more likely. Applications:

Applications of Energy-based models

Given a trained model, many applications require relative comparisons. Hence $Z(\theta)$ is not needed.

Example: Ising Model

• There is a true image $\mathbf{y} \in \{0,1\}^{3 \times 3}$, and a corrupted image $\mathbf{x} \in \{0,1\}^{3 \times 3}$. We know \mathbf{x} , and want to somehow recover \mathbf{y} .

• We model the joint probability distribution $p(\mathbf{y}, \mathbf{x})$ as

$$p(\mathbf{y}, \mathbf{x}) = \frac{1}{Z} \exp \left(\sum_{i} \psi_i(x_i, y_i) + \sum_{(i,j) \in E} \psi_{ij}(y_i, y_j) \right)$$

- $\psi_i(x_i, y_i)$: the *i*-th corrupted pixel depends on the *i*-th original pixel
- $\psi_{ij}(y_i, y_j)$: neighboring pixels tend to have the same value
- How did the original image y look like? Solution: maximize p(y|x). Or equivalently, maximize p(y, x).

Example: Product of Experts

- Suppose you have trained several models q_{θ1}(**x**), r_{θ2}(**x**), t_{θ3}(**x**). They can be different models (PixelCNN, Flow, etc.)
- Each one is like an *expert* that can be used to score how likely an input **x** is.
- Assuming the experts make their judgments indpendently, it is tempting to ensemble them as

$$p_{ heta_1}(\mathbf{x})q_{ heta_2}(\mathbf{x})r_{ heta_3}(\mathbf{x})$$

• To get a valid probability distribution, we need to normalize

$$p_{\theta_1,\theta_2,\theta_3}(\mathbf{x}) = \frac{1}{Z(\theta_1,\theta_2,\theta_3)} q_{\theta_1}(\mathbf{x}) r_{\theta_2}(\mathbf{x}) t_{\theta_3}(\mathbf{x})$$

 Note: similar to an AND operation (e.g., probability is zero as long as one model gives zero probability), unlike mixture models which behave more like OR

Example: Product of Experts

Image source: Du et al., 2020.

Example: Restricted Boltzmann machine (RBM)

- RBM: energy-based model with latent variables
- Two types of variables:

$$lacksymbol{9}$$
 $lacksymbol{x} \in \{0,1\}^n$ are visible variables (e.g., pixel values)

2 $z \in \{0,1\}^m$ are latent ones

• The joint distribution is

$$p_{W,b,c}(\mathbf{x},\mathbf{z}) = \frac{1}{Z} \exp\left(\mathbf{x}^T W \mathbf{z} + b \mathbf{x} + c \mathbf{z}\right) = \frac{1}{Z} \exp\left(\sum_{i=1}^n \sum_{j=1}^m x_i z_j w_{ij} + b \mathbf{x} + c \mathbf{z}\right)$$

• Restricted because there are no visible-visible and hidden-hidden connections, i.e., $x_i x_j$ or $z_i z_j$ terms in the objective

Stefano Ermon (AI Lab)

Deep Generative Models

Example: Deep Boltzmann Machines

Stacked RBMs are one of the first deep generative models:

Deep Boltzmann machine

- Bottom layer variables v are pixel values. Layers above (h) represent "higher-level" features (corners, edges, etc).
- Early deep neural networks for *supervised learning* had to be pre-trained like this to make them work.

Stefano Ermon (AI Lab)

Deep Generative Models

Deep Boltzmann Machines: samples

Image source: Salakhutdinov and Hinton, 2009.

Energy-based models: learning and inference

$$p_{\theta}(\mathbf{x}) = \frac{1}{\int \exp(f_{\theta}(\mathbf{x}))} \exp(f_{\theta}(\mathbf{x})) = \frac{1}{Z(\theta)} \exp(f_{\theta}(\mathbf{x}))$$

Pros:

• can plug in pretty much any function $f_{\theta}(\mathbf{x})$ you want Cons (lots of them):

- Sampling is hard
- Evaluating likelihood (learning) is hard
- No feature learning

Curse of dimensionality: The fundamental issue is that computing $Z(\theta)$ numerically (when no analytic solution is available) scales exponentially in the number of dimensions of **x**.

Computing the normalization constant is hard

• As an example, the RBM joint distribution is

$$p_{W,b,c}(\mathbf{x},\mathbf{z}) = \frac{1}{Z} \exp\left(\mathbf{x}^T W \mathbf{z} + b \mathbf{x} + c \mathbf{z}\right)$$

where

- **(**) $\mathbf{x} \in \{0,1\}^n$ are visible variables (e.g., pixel values)
- 2 $\mathbf{z} \in \{0,1\}^m$ are latent ones
- The normalization constant (the "volume") is

$$Z(W, b, c) = \sum_{\mathbf{x} \in \{0,1\}^n} \sum_{\mathbf{z} \in \{0,1\}^m} \exp\left(\mathbf{x}^T W \mathbf{z} + b \mathbf{x} + c \mathbf{z}\right)$$

- Note: it is a well defined function of the parameters W, b, c, but no simple closed-form. Takes time exponential in n, m to compute. This means that *evaluating* the objective function p_{W,b,c}(x, z) for likelihood based learning is hard.
- **Observation:** Optimizing the likelihood $p_{W,b,c}(\mathbf{x}, \mathbf{z})$ is difficult, but optimizing the un-normalized probability exp $(\mathbf{x}^T W \mathbf{z} + b \mathbf{x} + c \mathbf{z})$ (w.r.t. trainable parameters W, b, c) is easy.

- Goal: maximize $\frac{\exp\{f_{\theta}(\mathbf{x}_{train})\}}{Z(\theta)}$. Increase numerator, decrease denominator.
- Intuition: because the model is not normalized, increasing the un-normalized log-probability $f_{\theta}(\mathbf{x}_{train})$ by changing θ does **not** guarantee that \mathbf{x}_{train} becomes relatively more likely (compared to the rest).
- We also need to take into account the effect on other "wrong points" and try to "push them down" to also make $Z(\theta)$ small.

Contrastive Divergence

- Goal: maximize $\frac{\exp\{f_{\theta}(x_{train})\}}{Z(\theta)}$
- Idea: Instead of evaluating $Z(\theta)$ exactly, use a Monte Carlo estimate.
- Contrastive divergence algorithm: sample $x_{sample} \sim p_{\theta}$, take step on $\nabla_{\theta} (f_{\theta}(x_{train}) f_{\theta}(x_{sample}))$. Make training data more likely than typical sample from the model.

Contrastive Divergence

- Maximize log-likelihood: $\max_{\theta} f_{\theta}(x_{train}) \log Z(\theta)$.
- Gradient of log-likelihood:

$$\begin{aligned} \nabla_{\theta} f_{\theta}(x_{train}) - \nabla_{\theta} \log Z(\theta) \\ &= \nabla_{\theta} f_{\theta}(x_{train}) - \frac{\nabla_{\theta} Z(\theta)}{Z(\theta)} \\ &= \nabla_{\theta} f_{\theta}(x_{train}) - \frac{1}{Z(\theta)} \int \nabla_{\theta} \exp\{f_{\theta}(x)\} dx \\ &= \nabla_{\theta} f_{\theta}(x_{train}) - \frac{1}{Z(\theta)} \int \exp\{f_{\theta}(x)\} \nabla_{\theta} f_{\theta}(x) dx \\ &= \nabla_{\theta} f_{\theta}(x_{train}) - \int \frac{\exp\{f_{\theta}(x)\}}{Z(\theta)} \nabla_{\theta} f_{\theta}(x) dx \\ &= \nabla_{\theta} f_{\theta}(x_{train}) - \sum_{x_{sample}} [\nabla_{\theta} f_{\theta}(x_{sample})] \\ &\approx \nabla_{\theta} f_{\theta}(x_{train}) - \nabla_{\theta} f_{\theta}(x_{sample}), \end{aligned}$$

where $x_{sample} \sim \exp\{f_{\theta}(x_{sample})\}/Z(\theta)$.

• How to sample?

Sampling from energy-based models

$$p_{\theta}(\mathbf{x}) = rac{1}{\int \exp(f_{ heta}(\mathbf{x}))} \exp(f_{ heta}(\mathbf{x})) = rac{1}{Z(heta)} \exp(f_{ heta}(\mathbf{x}))$$

- No direct way to sample like in autoregressive or flow models. Main issue: cannot easily compute how likely each possible sample is
- However, we can easily compare two samples \mathbf{x}, \mathbf{x}' .
- Use an iterative approach called Markov Chain Monte Carlo:

Works in theory, but can take a very long time to converge

Sampling from energy-based models

- For any continuous distribution p_θ(**x**), suppose we can compute its gradient (the score function) ∇_x log p_θ(**x**).
- Let $\pi(\mathbf{x})$ be a prior distribution that is easy to sample from.
- Langevin MCMC.
 - $\mathbf{x}^0 \sim \pi(\mathbf{x})$
 - Repeat $\mathbf{x}^{t+1} \sim \mathbf{x}^t + \epsilon \nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x}^t) + \sqrt{2\epsilon} \mathbf{z}^t$ for $t = 0, 1, 2, \cdots, T-1$, where $\mathbf{z}^t \sim \mathcal{N}(0, I)$.
 - If $\epsilon \to 0$ and $T \to \infty$, we have $\mathbf{x}^T \sim p_{\theta}(\mathbf{x})$.

Note that for energy-based models, the score function is tractable

$$\nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x}) = \nabla_{\mathbf{x}} f_{\theta}(\mathbf{x}) - \underbrace{\nabla_{\mathbf{x}} \log Z(\theta)}_{=0}$$
$$= \nabla_{\mathbf{x}} f_{\theta}(\mathbf{x})$$

Modern energy-based models

Langevin sampling

Face samples

Image source: Nijkamp et al. 2019

26/1

Modern energy-based models

ImageNet samples

Image source: Du et al., 2019