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Why

Explainable models

What is in the scene?

Controllable generation

Generate a red ball instead

Blue sky

Pink wall

Small purple ball
Green floor

Decompose data into a set of underlying 
human-interpretable factors of variation
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How: Fully-Supervised

Strategy: Label everything

{dark blue wall, green floor, green oval}

{green wall, red floor, green cylinder}

{red wall, green floor, pink ball}

Controllable generation as label-conditional 
generative modeling

green wall, red floor, blue cylinder
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How: Fully-Supervised

Problem: Some things are hard to label

What kind of 
glasses?

What kind of 
hairstyle?

Generate this guy with this hair
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How: Unsupervised?

Strategy: Exploit statistical independence assumption + neural net magic

Beta-VAE

TC-VAE

FactorVAE

Swivel the chair
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How: Unsupervised?

Problem: Is statistical independence assumption + neural net magic enough?

Z 1: S
ha

pe

Z2: Shading

vs

Locatello, et al. Challenging Common Assumptions in 
the Unsupervised Learning of Disentangled 
Representations, ICML 2019.
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How: Weakly Supervised

Strategy: Leverage “weak” supervision when possible
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How: Weakly Supervised

Restricted Labeling: Label what we can

Pink wall

Purple ball
Green floor
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Size: ¯\_(ツ)_/¯



How: Weakly Supervised

Match Pairing: Find pairs with known similarities

Same ground color

Real world data: direct intervention to 
share / change certain factors
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How: Weakly Supervised

Rank Pairing: Compare pairs

Which is bigger?
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The Plan

1. Definitions: Decompose disentanglement into:
a. Consistency
b. Restrictiveness

2. Guarantees: Prove whether weak supervision guarantees consistency, 
restrictiveness, or both

Departure from existing literature: no end-to-end theoretical framework of disentanglement 11



Definitions

Disentangle: What does it mean when I say Z1 disentangles size?
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1. When z1 is fixed, is size fixed?
2. When we only change z1, does only size change?



Definitions

Disentangle: What does it mean when I say Z1 disentangles size?
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1. When z1 is fixed, is size fixed? (Consistency)
2. When we only change z1, does only size change? (Restrictiveness)



Definitions: Consistency
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When ZI is fixed, SI is fixed

Oracle encoder

Generative model

Perturbation-based generation



Definitions: Restrictiveness
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When only ZI is changed, only SI is changed

Equivalently: when Z\I is fixed, S\I is fixed

Oracle encoder
Generative model

Perturbation-based generation



Definitions: Disentanglement
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ZI is consistent and restricted to SI



Consistency versus Restrictiveness
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When only ZI is changed, only SI is changed

Equivalently: when Z\I is fixed, S\I is fixed



Consistency versus Restrictiveness
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Union Rules

19

Consistency Union:

If fixing ZI fixes SI 
and fixing ZJ fixes SJ 
then fixing ( ZI , ZJ ) fixes ( SI , SJ )

Restrictiveness Union:

If changing ZI changes only SI 
and changing ZJ changes only SJ 
then changing ( ZI , ZJ ) changes only ( SI , SJ )



Intersection Rules
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Consistency Intersection:

If fixing ZI fixes SI 
and fixing ZJ fixes SJ 
then fixing ZV fixes SV

Restrictiveness Intersection:

If changing ZI changes only SI 
and changing ZJ changes only SJ 
then changing ZV changes only SV



Disentanglement Rule
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Disentanglement via Consistency 

Consistency on all factors implies 
disentanglement on all factors

Disentanglement via Restrictiveness 

Restrictiveness on all factors implies 
disentanglement on all factors



Summary of Rules
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Summary of Rules
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Strategy for Disentanglement

Dataset 1 → C(1)

Dataset 2 → C(2)

…

Dataset n → C(n)

Using datasets together (+ right algorithm) guarantees full disentanglement
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Restricted Labeling Guarantees Consistency
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sI s\I

x

Distribution Match
zI z\I

x

ZI will be consistent with SI



Match Pairing Guarantees Consistency
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ZI will be consistent with SI

Distribution Match

sI s’\Is\I

x x’

zI z’\Iz\I

x x’



Rank Pairing Guarantees Consistency
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Distribution Match
s\i si s’\i s’i

x x’y

z\i zi z’\i z’i

x x’y

ZI will be consistent with SI



Summary of Guarantees
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Targeted Consistency / Restrictiveness
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Generative model trained via restricted labeling at S5 

Evaluated model on consistency of Z0 vs S0



Targeted Consistency / Restrictiveness
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Consistency:
Restricted Labeling

Consistency:
Match Pairing

(Share 1 factor)

Restrictiveness:
Match Pairing

(Change 1 factor)

Consistency:
Rank pairing

Restrictiveness:
Intersection



Consistency versus Restrictiveness
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● Models trained to guarantee 
only consistency or 
restrictiveness of one factor

● Strong correlation of 
consistency vs restrictiveness



Digression: Style-Content Disentanglement
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z y

x

Observed 
class label

Unobserved 
style

St
yl

e

Content

Only content-consistency is guaranteed
Style-content disentanglement not guaranteed (but due to neural net magic)



Full Disentanglement
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Full Disentanglement: Visualizations
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● Visualize multiple rows of 
single-factor ablation

● Check for consistency and 
restrictiveness

Elevation

Azimuth



Full Disentanglement: Visualizations
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● Visualize multiple rows of 
single-factor ablation

● Check for consistency and 
restrictiveness

 Ground truth factors: floor color, wall color, object color, object 
size, object type, and azimuth.



Full Disentanglement: Visualizations
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● Visualize multiple rows of 
single-factor ablation

● Check for consistency and 
restrictiveness

Ground truth factor: object size

Ground truth factor: wall color



Conclusions

37

● Definitions for disentanglement

● A calculus of disentanglement

● Analyzed weak supervision methods

● Demonstrated guarantees empirically



Conclusions

● Definitions for disentanglement

● A calculus of disentanglement

● Analyzed weak supervision methods

● Demonstrated guarantees empirically
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● Better definitions?

● Do new definitions preserve calculus?

● Analyze other weak supervision methods?

● Cost of weak supervision in real world?



Assumption: X → S is deterministic

Blue sky

Pink wall

Small purple ball
Green floor
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Questions?

40

Entangled Disentangled

ruishu@stanford.edu
@_smileyball
@smiley._.ball


