Weakly Supervised Disentanglement with Guarantees

Rui Shu

Joint work with Yining Chen, Abhishek Kumar, Stefano Ermon, Ben Poole

Why

Decompose data into a set of underlying **human-interpretable** factors of variation

Explainable models

What is in the scene?

Controllable generation

Generate a red ball instead

How: Fully-Supervised

Strategy: Label everything

{dark blue wall, green floor, green oval}

{green wall, red floor, green cylinder}

{red wall, green floor, pink ball}

Controllable generation as label-conditional generative modeling

green wall, red floor, blue cylinder

How: Fully-Supervised

Problem: Some things are hard to label

How: Unsupervised?

Strategy: Exploit statistical independence assumption + neural net magic

How: Unsupervised?

Problem: Is statistical independence assumption + neural net magic enough?

mean) are correlated. (ii) We do not find any evidence that the considered models can be used to reliably learn disentangled representations in an *unsupervised* manner as random seeds and hyperparameters seem to matter more than the model choice. Furthermore, good trained models seemingly cannot be identified without access to ground-truth labels even if we are allowed to transfer good hyperparameter values across data sets. (iii) For

Locatello, et al. *Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations*, ICML 2019.

Strategy: Leverage "weak" supervision when possible

Restricted Labeling: Label what we can

Match Pairing: Find pairs with known similarities

Same ground color

Real world data: direct intervention to share / change certain factors

Rank Pairing: Compare pairs

Which is bigger?

The Plan

- 1. **Definitions**: Decompose disentanglement into:
 - a. Consistency
 - b. Restrictiveness
- 2. **Guarantees:** Prove whether weak supervision guarantees consistency, restrictiveness, or both

Definitions

Disentangle: What does it mean when I say Z1 disentangles size?

- (a) Disentanglement
- When z_1 is fixed, is size fixed? When we only change z_1 , does only size change?

Definitions

Disentangle: What does it mean when I say Z1 disentangles *size?*

- 1. When z_1 is fixed, is size fixed? (**Consistency**)
- 2. When we only change z₁, does only size change? (**Restrictiveness**)

Definitions: Consistency

(b) Consistency

When Z_{τ} is fixed, S_{τ} is fixed

Perturbation-based generation

Definitions: Restrictiveness

(c) Restrictiveness

 $z_{\setminus I} \sim p(z_{\setminus I})$ $z_I, z_I' \stackrel{\text{iid}}{\sim} p(z_I \mid z_{\setminus I}).$ Perturbation-based generation

Generative model

Oracle encoder

When only Z, is changed, only S, is changed Equivalently: when Z_{ij} is fixed, S_{ij} is fixed

Definitions: Disentanglement

 $D(I) := C(I) \land R(I)$

(a) Disentanglement

 $\mathbf{Z}_{\!\scriptscriptstyle I}$ is consistent **and** restricted to $\mathbf{S}_{\!\scriptscriptstyle I}$

Consistency versus Restrictiveness

(c) Restrictiveness

When only Z_I is changed, only S_I is changed

Equivalently: when Z_{ij} is fixed, S_{ij} is fixed

$$C(I) \Longleftrightarrow R(\backslash I)$$

Consistency versus Restrictiveness

$$R(I) \not\Longrightarrow C(I)$$

$$C(I) \not\Longrightarrow R(I)$$

Union Rules

Consistency Union:

If fixing Z_I fixes S_I and fixing Z_J fixes S_J then fixing (Z_I, Z_J) fixes (S_I, S_J)

Restrictiveness Union:

If changing Z_I changes only S_I and changing Z_J changes only S_J then changing (Z_I, Z_I) changes only (S_I, S_I)

$$C(I) \wedge C(J) \implies C(I \cup J)$$

$$R(I) \wedge R(J) \implies R(I \cup J)$$

Intersection Rules

Consistency Intersection:

If fixing Z_I fixes S_I and fixing Z_J fixes S_J then fixing Z_V fixes S_V

Restrictiveness Intersection:

If changing Z_I changes only S_I and changing Z_J changes only S_J then changing Z_V changes only S_V

$$C(I) \wedge C(J) \implies C(I \cap J)$$

$$R(I) \wedge R(J) \implies R(I \cap J)$$

Disentanglement Rule

Disentanglement via Consistency

Consistency on all factors implies disentanglement on all factors

Disentanglement via Restrictiveness

Restrictiveness on all factors implies disentanglement on all factors

$$\bigwedge_{i=1}^n C(i) \iff \bigwedge_{i=1}^n D(i)$$

$$\bigwedge_{i=1}^{n} R(i) \Longleftrightarrow \bigwedge_{i=1}^{n} D(i)$$

Summary of Rules

Consistency and Restrictiveness

$$C(I) \implies R(I)$$

$$R(I) \implies C(I)$$

$$C(I) \iff R(\backslash I)$$

Union Rules

$$C(I) \wedge C(J) \implies C(I \cup J)$$

$$R(I) \wedge R(J) \implies R(I \cup J)$$

Intersection Rules

$$C(I) \wedge C(J) \implies C(I \cap J)$$

$$R(I) \wedge R(J) \implies R(I \cap J)$$

Full Disentanglement

$$\bigwedge_{i=1}^{n} C(i) \iff \bigwedge_{i=1}^{n} D(i)$$

$$\bigwedge_{i=1}^{n} R(i) \Longleftrightarrow \bigwedge_{i=1}^{n} D(i)$$

Summary of Rules

Consistency and Restrictiveness

$$C(I) \implies R(I)$$

$$R(I) \implies C(I)$$

$$C(I) \iff R(\backslash I)$$

Union Rules

$$C(I) \wedge C(J) \implies C(I \cup J)$$

$$R(I) \wedge R(J) \implies R(I \cup J)$$

Intersection Rules

$$C(I) \wedge C(J) \implies C(I \cap J)$$

$$R(I) \wedge R(J) \implies R(I \cap J)$$

Full Disentanglement

$$\bigwedge_{i=1}^n C(i) \iff \bigwedge_{i=1}^n D(i)$$

$$\bigwedge_{i=1}^{n} R(i) \iff \bigwedge_{i=1}^{n} D(i)$$

Strategy for Disentanglement

Dataset $1 \rightarrow C(1)$

Dataset $2 \rightarrow C(2)$

• • •

Dataset $n \rightarrow C(n)$

Using datasets together (+ right algorithm) guarantees full disentanglement

Restricted Labeling Guarantees Consistency

Match Pairing Guarantees Consistency

Rank Pairing Guarantees Consistency

Summary of Guarantees

Theorem 1. Given any oracle $(p^*(s), g^*, e^*) \in \mathcal{H}$, consider the distribution-matching algorithm \mathcal{A} that selects a model $(p(z), g, e) \in \mathcal{H}$ such that:

- 1. $(g^*(S), S_I) \stackrel{d}{=} (g(Z), Z_I)$ (Restricted Labeling); or
- 2. $\left(g^*(S_I, S_{\backslash I}), g^*(S_I, S'_{\backslash I})\right) \stackrel{d}{=} \left(g(Z_I, Z_{\backslash I}), g(Z_I, Z'_{\backslash I})\right)$ (Match Pairing); or
- 3. $(g^*(S), g^*(S'), \mathbf{1}\{S_I \leq S_I'\}) \stackrel{d}{=} (g(Z), g(Z'), \mathbf{1}\{Z_I \leq Z_I'\})$ (Rank Pairing).

Then the latent variable Z_I from the learned generative model (p(z), g) will be consistent with the factor of variation S_I .

Targeted Consistency / Restrictiveness

Generative model trained via restricted labeling at S_5

Evaluated model on consistency of Z_0 vs S_0

Targeted Consistency / Restrictiveness

Consistency: Restricted Labeling

Consistency: Match Pairing (Share 1 factor)

Restrictiveness: Match Pairing (Change 1 factor)

Consistency: Rank pairing

Restrictiveness: Intersection

Consistency versus Restrictiveness

- Models trained to guarantee only consistency or restrictiveness of one factor
- Strong correlation of consistency vs restrictiveness

Digression: Style-Content Disentanglement

Only content-consistency is guaranteed
Style-content disentanglement not guaranteed (but due to neural net magic)

Full Disentanglement

Full Disentanglement: Visualizations

Elevation

- Visualize multiple rows of single-factor ablation
- Check for consistency and restrictiveness

Azimuth

Full Disentanglement: Visualizations

Check for consistency and restrictiveness

Visualize multiple rows of

single-factor ablation

Ground truth factors: floor color, wall color, object color, object size, object type, and azimuth.

Full Disentanglement: Visualizations

Ground truth factor: object size

- Visualize multiple rows of single-factor ablation
- Check for consistency and restrictiveness

Ground truth factor: wall color

Conclusions

- Definitions for disentanglement
- A calculus of disentanglement
- Analyzed weak supervision methods
- Demonstrated guarantees empirically

Conclusions

- Definitions for disentanglement
- A calculus of disentanglement
- Analyzed weak supervision methods
- Demonstrated guarantees empirically

- Better definitions?
- Do new definitions preserve calculus?
- Analyze other weak supervision methods?
- Cost of weak supervision in real world?

Assumption: $X \rightarrow S$ is deterministic

Questions?

Entangled

Disentangled