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Probabilistic Inference

Probabilistic inference is a particular way of viewing the world:

+

Observations

=

Prior belief Updated (posterior) 
beliefTypically the beliefs are “hidden” (unobserved), and we want to 

model them using latent variables.



Probabilistic Inference

Many machine learning applications can be cast as probabilistic inference queries:

BioinformaticsMedical diagnosis Human cognition Computer vision
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Medical Diagnosis Example

observed symptoms

x

identity of disease

z

Goal: Infer identity of disease 
given a set of observed symptoms 
from a patient population.
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Exact Inference
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Marginal is intractable, we can’t compute this even if we want to

family of tractable 
distributions

intractable integral
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Approximate Variational Inference
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→ turned an intractable 
inference problem into an 
optimization problem

dependence on x: learn new q per data point
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Amortized Variational Inference
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→ scalability: VAE formulation

deterministic mapping predicts z as a function of x



Multiple Patient Populations
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Doctor is equivalently re-learning 
how to diagnose an illness :/



Multiple Patient Populations

Share statistical strength across different populations 
to infer latent representations that transfer to similar, 
but previously unseen populations (distributions)



(Naive) Meta-Amortized Variational Inference

meta-distribution



Meta-Amortized Variational Inference

meta-distribution

shared meta-inference network



Meta-Inference Network

● Meta-inference model                         takes in 2 inputs:
○ Marginal 
○ Query point

● Mapping
● Parameterize encoder with neural network
● Dataset         : represent each marginal distribution as a 

set of samples  



In Practice: MetaVAE

Summary network ingests samples from each dataset

Aggregation network performs inference

summary network

samples

query

aggregation network

decoder_i



Related Work
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Variational Homoencoder (VHE)

xD  != xT

Avoid restrictive assumption on global prior over datasets p(c)



Intuition: Clustering Mixtures of Gaussians

Learns how to cluster: for 50 datasets, MetaVAE 
achieves 9.9% clustering error, while VAE gets 27.9%

z = 0 z = 1 



Learning Invariant Representations
● Apply various 

transformations
● Amortize over subsets 

of transformations, 
learn representations

● Test representations 
on held-out 
transformations 
(classification)



Invariance Experiment Results

MetaVAE representations consistently 
outperform NS/VHE on MNIST + NORB 

datasets



Analysis

MetaVAE representations tend not to change 
very much within a family of transformations 

that it was amortized over, as desired.



Conclusion

● Limitations
○ No sampling
○ Semi-parametric
○ Arbitrary dataset construction

● Developed an algorithm for a family of probabilistic models: 
meta-amortized inference paradigm

● MetaVAE learns transferrable representations that generalize 
well across similar data distributions in downstream tasks

● Paper: https://arxiv.org/pdf/1902.01950.pdf

https://arxiv.org/pdf/1902.01950.pdf


Encoding Musical Style with 
Transformer Autoencoders



Generative Models for Music

● Generating music is a challenging problem, as music 
contains structure at multiple timescales. 
○ Periodicity, repetition

● Coherence in style and rhythm across (long) time periods!

raw audio: WaveNet, 
GANs, etc.symbolic: RNNs, 

LSTMs, etc.



Music Transformer

● Symbolic: event-based representation that allows 
for generation of expressive performances 
(without generating a score)

● Current SOTA in music generation
○ Can generate music over 60 seconds in length

● Attention-based
○ Replaces self-attention with relative attention



What We Want

● Control music generation using either (1) performance or (2) 
melody + perf as conditioning

● Generate pieces that sound similar in style to input pieces!



Transformer Autoencoder 1. Sum

2. Concatenation

3. Tile (temporal 
dimension)



Quantitative Metrics

Transformer autoencoder (both 
performance-only and melody & perf) 
outperform baselines in generating similar 
pieces!



Samples

Conditioning Performance

Generated Performance:
“Twinkle, Twinkle” in the style 
of the above performance

Twinkle, Twinkle melody

Conditioning Performance

Generated Performance:
“Claire de Lune” in the style 
of the above performance

Claire de Lune



Conclusion

● Developed a method for controllable generation 
with high-level controls for music
○ Demonstrated efficacy both quantitatively and 

through qualitative listening tests
● Thanks!

○ Stanford: Mike Wu, Noah Goodman, Stefano Ermon

○ Magenta @ Google Brain: Jesse Engel, Ian Simon, 
Curtis “Fjord” Hawthorne, Monica Dinculescu
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