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Recap of normalizing flow models

So far

@ Transform simple to complex distributions via sequence of invertible
transformations

@ Directed latent variable models with marginal likelihood given by the
change of variables formula

@ Triangular Jacobian permits efficient evaluation of log-likelihoods
Plan for today

@ Invertible transformations with diagonal Jacobians (NICE, Real-NVP)

@ Autoregressive Models as Normalizing Flow Models

@ Case Study: Probability density distillation for efficient learning and
inference in Parallel Wavenet
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Designing invertible transformations

@ NICE or Nonlinear Independent Components Estimation (Dinh et al.,
2014) composes two kinds of invertible transformations: additive
coupling layers and rescaling layers

@ Real-NVP (Dinh et al., 2017)
@ Inverse Autoregressive Flow (Kingma et al., 2016)
@ Masked Autoregressive Flow (Papamakarios et al., 2017)
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NICE - Additive coupling layers

Partition the variables z into two disjoint subsets, say z;.4 and zg41., for
any 1 <d<n

@ Forward mapping z — x:
e Xi.4 = 21,4 (identity transformation)

® Xgi1:n = Zd+1:n + Me(z1.4) (mg(:) is a neural network with parameters
6, d input units, and n — d output units)
@ Inverse mapping x — z:
e 21.4 = X1.4 (identity transformation)
@ Zgi1:n = Xd+1:n — mG(Xl:d)
@ Jacobian of forward mapping:

sk (0
det(J) =1

@ Volume preserving transformation since determinant is 1.
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NICE - Rescaling layers

e Additive coupling layers are composed together (with arbitrary

partitions of variables in each layer)
o Final layer of NICE applies a rescaling transformation
@ Forward mapping z — x:

Xj = §5;Z;

where s; > 0 is the scaling factor for the /-th dimension.

@ Inverse mapping x — z: N
1

zZj = —
Si

@ Jacobian of forward mapping:

J = diag(s)

det(J) = f[ S;
i=1
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(b) Model trained on TFD

(a) Model trained on MNIST
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Samples generated via NICE
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(c) Model trained on SVHN (d) Model trained on CIFAR-10
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Real-NVP: Non-volume preserving extension of NICE

@ Forward mapping z — x:
o X1.4 = 21,4 (identity transformation)
® Xdi1n = Zdi1:n © exp(ag(z1:q)) + 110(21:0)
o pg(-) and ag(-) are both neural networks with parameters 6, d input
units, and n — d output units [®: elementwise product]
@ Inverse mapping x — z:
e z1.4 = X1.4 (identity transformation)
® Zgi1:n = (Xd41:n — Ho(X1:0)) © (exp(—ag(X1:q)))
@ Jacobian of forward mapping:

J= 0
T oz \ Fete diag(exp(an(zia)))

det(J) = H exp(ag(z1:4)i) = exp < Z ae(zl;d),)

i=d+1 i=d+1

@ Non-volume preserving transformation in general since determinant can
be less than or greater than 1
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Samples generated via Real-NVP
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Latent space interpolations via Real-NVP

Using with four validation examples z(1),z(2) z(3) z(4) | define interpolated
Z as:

z = cos(zM cos¢’ + 2P sing’) + sing(z3 cosd’ + 2 sing)

with manifold parameterized by ¢ and ¢'.
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Autoregressive models as flow models

o Consider a Gausian autoregressive model:
n
p(x) = [ p(xilx<i)
i=1

such that p(x; | x<;) = N (pi(xt, -, xi—1), exp(ci(x1, -, xi—1))?).
Here, ui(-) and «;(-) are neural networks for i > 1 and constants for
i=1.

@ Sampler for this model:

Sample z; ~ N(0,1) for i=1,--- ,n

Let x; = exp(a1)z1 + p1. Compute pa(x1), aa(x1)

Let xo = exp(a2)zz + 2. Compute pz(xi, x2), as(x1, x2)

Let x3 = exp(a3)z3 + p3. ..

@ Flow interpretation: transforms samples from the standard Gaussian
(z1,22,...,2p) to those generated from the model (x1, x2, ..., x,) via
invertible transformations (parameterized by pu;(+), «;(+))
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Masked Autoregressive Flow (MAF)

@i =z -exp(o) +p; Vi€ {l...n}
Transformed vl a e
distribution | %1 “s E

T2

Base vee

e Forward mapping from z — x:

o Let x; = exp(a1)z1 + p1. Compute pa(xq), aa(x1)
o Let xo = exp(a2)zz + p2. Compute p3(x1, x2), az(x1, x2)

e Sampling is sequential and slow (like autoregressive): O(n) time

Figure adapted from Eric Jang's blog
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Masked Autoregressive Flow (MAF)

Transformed
distribution

Base
distribution

@ Inverse mapping from x — z:

Compute all p;, «; (can be done in parallel using e.g., MADE)

Let z; = (x1 — p1)/ exp(aq) (scale and shift)

Let zo = (xo — p2)/ exp(a2)

Let z3 = (x5 — p3)/ exp(as) ...

@ Jacobian is lower diagonal, hence determinant can be computed
efficiently

o Likelihood evaluation is easy and parallelizable (like MADE)

Figure adapted from Eric Jang's blog
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Inverse Autoregressive Flow (IAF)

2 =z -exp(a;) + p: Vie{l...n}

Transformed . -
distribution

@

Base .. ..
distribution a | b B

Forward mapping from z — x (parallel):

Sample z; ~ N(0,1) fori=1,--- |n
Compute all p;, a; (can be done in parallel)
Let x; = exp(@1)z1 + 1

Let xo = exp(a2)za + pi2 ...

@ Inverse mapping from x — z (sequential):

o Let z; = (x3 — u1)/ exp(as). Compute pa(z1), aa(z1)

o Let 2 = (X2 — /JQ)/ exp(ag). Compute /L:«;(Zl7 22),053(21722)
Fast to sample from, slow to evaluate likelihoods of data points (train)

Note: Fast to evaluate likelihoods of a generated point (cache z, z, ..., 2z,)

Figure adapted from Eric Jang's blog
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IAF is inverse of MAF

=z -exp(o) +p Vie{l..

Transformed
distribution

Transformed
distribution

Base
distribution 2

Figure: Inverse pass of MAF (Ieft) vs. Forward pass of IAF (right)

@ Interchanging z and x in the inverse transformation of MAF gives the
forward transformation of IAF

@ Similarly, forward transformation of MAF is inverse transformation of
IAF

Figure adapted from Eric Jang's blog

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 8




|IAF vs. MAF

Computational tradeoffs

o MAF: Fast likelihood evaluation, slow sampling
o |AF: Fast sampling, slow likelihood evaluation

MAF more suited for training based on MLE, density estimation

IAF more suited for real-time generation

Can we get the best of both worlds?
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Parallel Wavenet

@ Two part training with a teacher and student model

@ Teacher is parameterized by MAF. Teacher can be efficiently trained
via MLE

@ Once teacher is trained, initialize a student model parameterized by
IAF. Student model cannot efficiently evaluate density for external
datapoints but allows for efficient sampling

o Key observation: |IAF can also efficiently evaluate densities of its
own generations (via caching the noise variates z;, zp, . . ., Z,)
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Parallel Wavenet

o Probability density distillation: Student distribution is trained to
minimize the KL divergence between student (s) and teacher (t)

Dic (s, t) = Exvsllog s(x) — log t(x)]

@ Evaluating and optimizing Monte Carlo estimates of this objective
requires:
o Samples x from student model (IAF)
o Density of x assigned by student model
e Density of x assigned by teacher model (MAF)

@ All operations above can be implemented efficiently
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Parallel Wavenet: Overall algorithm

@ Training
o Step 1: Train teacher model (MAF) via MLE
o Step 2: Train student model (IAF) to minimize KL divergence with
teacher

@ Test-time: Use student model for testing

@ Improves sampling efficiency over original Wavenet (vanilla
autoregressive model) by 1000x!
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Summary of Normalizing Flow Models

@ Transform simple distributions into more complex distributions via
change of variables

@ Jacobian of transformations should have tractable determinant for
efficient learning and density estimation

@ Computational tradeoffs in evaluating forward and inverse
transformations
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