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Recap of normalizing flow models

So far

Transform simple to complex distributions via sequence of invertible
transformations

Directed latent variable models with marginal likelihood given by the
change of variables formula

Triangular Jacobian permits efficient evaluation of log-likelihoods

Plan for today

Invertible transformations with diagonal Jacobians (NICE, Real-NVP)

Autoregressive Models as Normalizing Flow Models

Case Study: Probability density distillation for efficient learning and
inference in Parallel Wavenet
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Designing invertible transformations

NICE or Nonlinear Independent Components Estimation (Dinh et al.,
2014) composes two kinds of invertible transformations: additive
coupling layers and rescaling layers

Real-NVP (Dinh et al., 2017)

Inverse Autoregressive Flow (Kingma et al., 2016)

Masked Autoregressive Flow (Papamakarios et al., 2017)
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NICE - Additive coupling layers

Partition the variables z into two disjoint subsets, say z1:d and zd+1:n for
any 1 ≤ d < n

Forward mapping z 7→ x:
x1:d = z1:d (identity transformation)
xd+1:n = zd+1:n + mθ(z1:d) (mθ(·) is a neural network with parameters
θ, d input units, and n − d output units)

Inverse mapping x 7→ z:
z1:d = x1:d (identity transformation)
zd+1:n = xd+1:n −mθ(x1:d)

Jacobian of forward mapping:

J =
∂x

∂z
=

(
Id 0

∂xd+1:n

∂z1:d
In−d

)

det(J) = 1

Volume preserving transformation since determinant is 1.
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NICE - Rescaling layers

Additive coupling layers are composed together (with arbitrary
partitions of variables in each layer)

Final layer of NICE applies a rescaling transformation

Forward mapping z 7→ x:
xi = sizi

where si > 0 is the scaling factor for the i-th dimension.

Inverse mapping x 7→ z:

zi =
xi
si

Jacobian of forward mapping:

J = diag(s)

det(J) =
n∏

i=1

si
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Samples generated via NICE
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Samples generated via NICE
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Real-NVP: Non-volume preserving extension of NICE

Forward mapping z 7→ x:
x1:d = z1:d (identity transformation)
xd+1:n = zd+1:n � exp(αθ(z1:d)) + µθ(z1:d)
µθ(·) and αθ(·) are both neural networks with parameters θ, d input
units, and n − d output units [�: elementwise product]

Inverse mapping x 7→ z:
z1:d = x1:d (identity transformation)
zd+1:n = (xd+1:n − µθ(x1:d))� (exp(−αθ(x1:d)))

Jacobian of forward mapping:

J =
∂x

∂z
=

(
Id 0

∂xd+1:n

∂z1:d
diag(exp(αθ(z1:d)))

)

det(J) =
n∏

i=d+1

exp(αθ(z1:d)i ) = exp

(
n∑

i=d+1

αθ(z1:d)i

)

Non-volume preserving transformation in general since determinant can
be less than or greater than 1
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Samples generated via Real-NVP
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Latent space interpolations via Real-NVP

Using with four validation examples z(1), z(2), z(3), z(4), define interpolated
z as:

z = cosφ(z(1)cosφ′ + z(2)sinφ′) + sinφ(z(3)cosφ′ + z(4)sinφ′)

with manifold parameterized by φ and φ′.
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Autoregressive models as flow models

Consider a Gausian autoregressive model:

p(x) =
n∏

i=1

p(xi |x<i )

such that p(xi | x<i ) = N (µi (x1, · · · , xi−1), exp(αi (x1, · · · , xi−1))2).
Here, µi (·) and αi (·) are neural networks for i > 1 and constants for
i = 1.

Sampler for this model:

Sample zi ∼ N (0, 1) for i = 1, · · · , n
Let x1 = exp(α1)z1 + µ1. Compute µ2(x1), α2(x1)
Let x2 = exp(α2)z2 + µ2. Compute µ3(x1, x2), α3(x1, x2)
Let x3 = exp(α3)z3 + µ3. ...

Flow interpretation: transforms samples from the standard Gaussian
(z1, z2, . . . , zn) to those generated from the model (x1, x2, . . . , xn) via
invertible transformations (parameterized by µi (·), αi (·))
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Masked Autoregressive Flow (MAF)

Forward mapping from z 7→ x:

Let x1 = exp(α1)z1 + µ1. Compute µ2(x1), α2(x1)
Let x2 = exp(α2)z2 + µ2. Compute µ3(x1, x2), α3(x1, x2)

Sampling is sequential and slow (like autoregressive): O(n) time

Figure adapted from Eric Jang’s blog
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Masked Autoregressive Flow (MAF)

Inverse mapping from x 7→ z:
Compute all µi , αi (can be done in parallel using e.g., MADE)
Let z1 = (x1 − µ1)/ exp(α1) (scale and shift)
Let z2 = (x2 − µ2)/ exp(α2)
Let z3 = (x3 − µ3)/ exp(α3) ...

Jacobian is lower diagonal, hence determinant can be computed
efficiently

Likelihood evaluation is easy and parallelizable (like MADE)

Figure adapted from Eric Jang’s blog
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Inverse Autoregressive Flow (IAF)

Forward mapping from z 7→ x (parallel):

Sample zi ∼ N (0, 1) for i = 1, · · · , n
Compute all µi , αi (can be done in parallel)
Let x1 = exp(α1)z1 + µ1

Let x2 = exp(α2)z2 + µ2 ...
Inverse mapping from x 7→ z (sequential):

Let z1 = (x1 − µ1)/ exp(α1). Compute µ2(z1), α2(z1)
Let z2 = (x2 − µ2)/ exp(α2). Compute µ3(z1, z2), α3(z1, z2)

Fast to sample from, slow to evaluate likelihoods of data points (train)

Note: Fast to evaluate likelihoods of a generated point (cache z1, z2, . . . , zn)

Figure adapted from Eric Jang’s blog
Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 14 / 20



IAF is inverse of MAF

Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

Interchanging z and x in the inverse transformation of MAF gives the
forward transformation of IAF

Similarly, forward transformation of MAF is inverse transformation of
IAF

Figure adapted from Eric Jang’s blog
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IAF vs. MAF

Computational tradeoffs

MAF: Fast likelihood evaluation, slow sampling
IAF: Fast sampling, slow likelihood evaluation

MAF more suited for training based on MLE, density estimation

IAF more suited for real-time generation

Can we get the best of both worlds?
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Parallel Wavenet

Two part training with a teacher and student model

Teacher is parameterized by MAF. Teacher can be efficiently trained
via MLE

Once teacher is trained, initialize a student model parameterized by
IAF. Student model cannot efficiently evaluate density for external
datapoints but allows for efficient sampling

Key observation: IAF can also efficiently evaluate densities of its
own generations (via caching the noise variates z1, z2, . . . , zn)
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Parallel Wavenet

Probability density distillation: Student distribution is trained to
minimize the KL divergence between student (s) and teacher (t)

DKL(s, t) = Ex∼s [log s(x)− log t(x)]

Evaluating and optimizing Monte Carlo estimates of this objective
requires:

Samples x from student model (IAF)
Density of x assigned by student model
Density of x assigned by teacher model (MAF)

All operations above can be implemented efficiently
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Parallel Wavenet: Overall algorithm

Training

Step 1: Train teacher model (MAF) via MLE
Step 2: Train student model (IAF) to minimize KL divergence with
teacher

Test-time: Use student model for testing

Improves sampling efficiency over original Wavenet (vanilla
autoregressive model) by 1000x!
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Summary of Normalizing Flow Models

Transform simple distributions into more complex distributions via
change of variables

Jacobian of transformations should have tractable determinant for
efficient learning and density estimation

Computational tradeoffs in evaluating forward and inverse
transformations
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