Generative Adversarial
Imitation Learning

Stefano Ermon

Joint work with Jayesh Gupta, Jonathan Ho, Yunzhu Li,
Hongyu Ren, and Jiaming Song

Stanford University



Reinforcement Learning

 Goal: Learn policies

* High-dimensional, raw
observations

Envi
T nvironment )4\\

Action




Reinforcement Learning

MDP: Model for (stochastic) sequential decision
making problems H

States

Actions A

Cost function (immediate): C: SxA 2 R
Transition Probabilities: P(s’|s,a)

Policy: mapping from states to actions
— E.&., (Sp->ay, S1->a0, S;->ap)

Reinforcement learning: minimize total (expected,
discounted) cost T

>.c(s)

t—0



Reinforcement Learning

RL(¢c) = argmin —H (7) + E,[c(s, a)]

mell

Learning (RL) policy &

Cost Function Reinforcement Optimal
e —> —> { }

Policy: mapping from

Envi t states to actions
C:SxA > R " MBP) E.8. (Sg>a,,
S->ay,
Cost S,->ay)
e States
RL needs e Actions A




Imitation

Input: expert behavior generated by .

{(86, aé, s’i, ai, L)~ TR

Goal: learn cost function (reward) or policy

(Ng and Russell, 2000), (Abbeel and Ng, 2004; Syed and Schapire, 2007), (Ratliff et al.,
20006), (Ziebart et al., 2008), (Kolter et al., 2008), (Finn et al., 2016), etc.



Behavioral Cloning

- N Sty
(State,Action) |

(State,Action) 3 ESie
(State,Action)

- J - J

Supervised Learning
(regression)

 Small errors compound over time (cascading
errors)

* Decisions are purposeful (require planning)



Inverse RL

 An approach to imitation
* Learns a cost ¢ such that

T =argmin g _ c(s,a)]
mell




Problem setup

RL(¢c) = argmin —H (7) + E,[c(s, a)]

mell

Cost Function ::> Reinforcement Optimal
c(s) |:> [

Learning (RL) policy &

Environment
(MDP)

Cost Function Inverse Reinforcement Expert’s Trajectories

c(s) <:| Learning (IRL) S, S1, Soy

ceC mell

maximize (min —H(m) + E;|c(s, a}]) — E,.lc(s,a)

Everything else Expert has
has high cost small cost
15

(Ziebart et al., 2010; ‘
Rust 1987)



Cost Function
c(s)

|

Cost Function
c(s)

Problem setup

—>

Rei

Learning (RL)

policy &

nforcement : Optimal

~Y

Environment

(similarfwrt y)

Inverse Reinforcement Expert’s Trajectories

IRLy(7g) = arg max|—v(c)

cCRS XA

Learning (IRL)

a

Sor S4s Soy .,

min —H (m) + E[c(s, u}]) — E . lc(s,a)]

mell

Convex cost regularizer
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Combining RL-IRL

O = occupancy measure =

Reinforcement Optimal
Learning (RL) |:> [ pp olicy = J distribution of state-action pairs
encountered when navigating

~ the environment with the policy

ﬂ (similar w.r.t. )

y-regularized Inverse

Reinforcement <— Expert’s Trajectories | [ = Expert’s
Learning (IRL) Sor S1,Sos OCccCupancy measure

Theorem: y-regularized inverse reinforcement learning,
implicitly, seeks a policy whose occupancy measure is close to
the expert’s, as measured by y* (convex conjugate of )

RLoIRLy(7mg) = argmin_ g —H(7) + V" (pr — Pry)
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Takeaway

Theorem: w-regularized inverse reinforcement learning,

Implicitly, seeks a policy whose occupancy measure is
close to the expert’s, as measured by p*

* Typical IRL definition: finding a cost function ¢ such
that the expert policy is uniquely optimal w.r.t. ¢

* Alternative view: IRL as a procedure that tries to
Induce a policy that matches the expert's occupancy
measure (generative model)



Special cases
RLolIRLy(mg) = argmin_ g —H(7) + V" (pr — pry)

* |f y(c)=constant, then Pz = Prg

— Not a useful algorithm. In practice, we only have
sampled trajectories

* Overfitting: Too much flexibility in choosing
the cost function (and the policy)

All cost functions
W(c)=constant




Towards Apprenticeship learning

* Solution: use features f ,
* Costc(s,a)=6 1,

IRLy(mg) = argmax —(c) + (1‘1‘1i1‘1 —H(m) + E;[c(s, f.'t-}:) —Explc(s,a)l

C'EE‘ES A 1 mell

Only these “simple” cost functions are allowed

Linear in
features

All cost functions




Apprenticeship learning

* For that choice of y, RL-IRL , framework
gives apprenticeship learning

RLoIRLy(mg) = argmin_ g —H(7) + V" (pr — pPry)

* Apprenticeship learning: find m performing
better than - over costs linear in the

features
— Abbeel and Ng (2004)
— Syed and Schapire (2007)



Apprenticeship learning

» Given {(sg,aq, S1,a%,...)} iy ~TE
* Goal: find m performing better than - over a
class of costs

minimize max E,|[c(s,a)] — E,,|c(s,a)]
T ceC

Approximated using
demonstrations



Issues with Apprenticeship learning

* Need to craft features very carefully

— unless the true expert cost function (assuming it
exists) lies in C, there is no guarantee that AL
will recover the expert policy

* RL-IRL(mg) is “encoding” the expert

behavior as a cost function in C.

— it might not be possible to decode it back if C is

too simple All cost functions
Tg Tp




Generative Adversarial Imitation
Learning

e Solution: use a more expressive class of cost
functions

Erzlg(c(s,a))] ife<O

400 otherwise

Yoalc) = {

All cost functions

E

—r —log(l —¢€") ifzx <0
+00 otherwise

where ¢g(z) = {



Generative Adversarial Imitation
Learning

 Y* = optimal negative log-loss of the binary
classification problem of distinguishing between
state-action pairs of mand m

noise J
Policy m
Expert Policy mg D
L generator
data sample }—{ dlscrlmmator}—[ sample J
data
sample?
yes/no
Vea(pr = prg) = sup_ Exllog(D(s,a))] + Exp[log(1 = D(s,a))]

De(0,1)S*A



Generative Adversarial Networks

D tries to D tries to
outputO output 1
Differentiable Differentiable
function D function D
1 T
x sampled x sampled
from data from model

T

Differentiable

function G

Input noise
Z

Figure from Goodfellow et al, 2014



GAIL
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How to optimize the objective

* Previous Apprenticeship learning work:
— Full dynamics model
— Small environment
— Repeated RL

* We propose: gradient descent over policy
parameters (and discriminator)

J. Ho, J. K. Gupta, and S. Ermon. Model-free imitation learning with policy optimization.
ICML 2016.



Properties

* [nherits pros of policy gradient
— Convergence to local minima
— Can be model free

* |Inherits cons of policy gradient
— High variance
— Small steps required



Properties

* [nherits pros of policy gradient
— Convergence to local minima
— Can be model free

* |Inherits cons of policy gradient
— High variance
— Small steps required

* Solution: trust region policy optimization



Results




Results

Input: driving demonstrations (Torcs)

Output policy:

From raw visual inputs

Li et al, 2017. InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations
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Experimental results
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Latent structure in demonstrations

Human model

_ Observed
Environment | B)

Behavior

P
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Latent structure

I nfOGAI L Observed

data

Add I
Smiling bl‘

Remove
Smiling

Eyeglass -' structure o

Remove, ‘
Eyeglass | ‘ ' ‘ Hou el al.

Maximize mutual information

Latent variables
Z

Observed
»

Behavior

Environment

N

P




InfoGAIL

Ly (?T,g},, Q@EJ) — Ecwp(c:),amﬂg(-|3,c} [lt}g Qu’: (C|53 {1)] T H(f)
< I(c;s,a)

Latent code ﬁximize mutual im
(s,a)

_ Observed
~ : B)| Environment O
Behavior

®)

° Qg

P




Synthetic Experiment

Demonstrations GAIL Info-GAIL



Li et al, 2017. InfoGAIL: Interpretable
Imitation Learning from Visual I nfOGAI L

Demonstrations

Environment

—
2
®
S
—+
<
)
=
o
o
®
n
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Li et al, 2017. InfoGAIL: Interpretable
Imitation Learning from Visual I nfOGAI L

Demonstrations

Environment
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Multi-agent environments

What are the goals of these 4 agents?



Problem setup

Optimal
policies

Cost Functions ﬁ
c,(s,a -
1(S,:2y) :D MA Reinforcement :

cy(S,ay) Learning (MARL)

Optimal
policies
nK

Environment
(Markov Game)

DRIVE ON LEFT DRIVE ON RIGHT

0,0

10,10




Problem setup

Cost Functions
S.C.80 |:> MA Reinforcement [Optmr_a{ J
Cn(S,an) Learning (MARL) ::> policies &
~J

~yY

ﬂ (Markov Game) (Slmllar Wrt LlJ)

Cost Functions Expert’s Trajectories
ci(s.ay) Inverse Reinforcement (Sgrapt--agh)
<:' Learning (MAIRL) <:| (sy,a4%,..a.V)

CN(;’ ay)

MIM,(7g) = argmaxmax min L, (7g,v)
el v reRSxA

"':(‘"T.ila‘(?TE-': t"‘} — _f?‘{ﬂ_: 1'1) + f:r" [ﬂ-E: -E".:I =+ 11[}‘)
r = MAIRL (7z) ;



MAGAIL
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Adversarial Imitation Learning



Environments

%

Demonstrations MAGAIL



Environments

Demonstrations
MAGAIL



Suboptimal demos

il i

MAGAIL

lighter plank + bumps on ground



Conclusions

IRL is a dual of an occupancy measure
matching problem (generative modeling)
Might need flexible cost functions

— GAN style approach

Policy gradient approach
— Scales to high dimensional settings

Towards unsupervised learning of latent
structure from demonstrations
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