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Model family
Story so far

@ Representation: Latent variable vs. fully observed

@ Objective function and optimization algorithm: Many divergences and
distances optimized via likelihood-free (two sample test) or likelihood
based methods

Plan for today: Evaluating generative models
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Evaluation

@ Evaluating generative models can be very tricky
o Key question: What is the task that you care about?

o Density estimation

e Sampling/generation

o Latent representation learning

e More than one task? Custom downstream task? E.g., Semisupervised
learning, image translation, compressive sensing etc.

@ In any research field, evaluation drives progress. How do we evaluate
generative models?
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Evaluation - Density Estimation

@ Straightforward for models which have tractable likelihoods
e Split dataset into train, validation, test sets
o Evaluate gradients based on train set
o Tune hyperparameters (e.g., learning rate, neural network architecture)
based on validation set
o Evaluate generalization by reporting likelihoods on test set

@ Caveat: Not all models have tractable likelihoods e.g., VAEs, GANs

e For VAEs, we can compare evidence lower bounds (ELBO) to
log-likelihoods

@ In general, we can use kernel density estimates only via samples
(non-parametric)
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Kernel Density Estimation

e Given: A model py(x) with an intractable/ill-defined density
o Let S = {x(1) x(® ... x(6)) be 6 data points drawn from py.
xO [ x@ T xC) [ x® [ xG) | x®)
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e What is py(—0.5)?

e Answer 1: Since —0.5¢ S, py(—0.5) =0

@ Answer 2: Compute a histogram by binning the samples
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@ Bin width= 2, min height=1/12 (arxea under histogram should equal
1). What is pg(—0.5)7 1/6 py(—1.99)? 1/6 pp(—2.01)? 1/12
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Kernel Density Estimation

e Answer 3: Compute kernel density estimate (KDE) over S
(7
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where ¢ is called the bandwidth parameter and K is called the kernel
function.

e Example: Gaussian kernel, K(u) = \/% exp (—3u?)

@ Histogram density estimate vs. KDE estimate with Gaussian kernel

© 0
o =}

0.10

Density function

0.05
Density function

0.00

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 13 6 /21



Kernel Density Estimation
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@ A kernel K is any non-negative function satisfying two properties
o Normalization: [* K(u)du =1 (ensures KDE is also normalized)
o Symmetric: K(u) = K(—u) for all u
@ Intuitively, a kernel is a measure of similarity between pairs of points
(function is higher when the difference in points is close to 0)
e Bandwidth o controls the smoothness (see right figure above)
o Optimal sigma (black) is such that KDE is close to true density (grey)
o Low sigma (red curve): undersmoothed
e High sigma (green curve): oversmoothed
o Tuned via crossvalidation

@ Con: KDE is very unreliable in higher dimensions
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Importance Sampling

o Likelihood weighting:

p(x) = Ep(z)[p(x[2)]

Can have high variance if p(z) is far from p(z|x)!

@ Annealed importance sampling: General purpose technique to
estimate ratios of normalizing constants N> /N7 of any two
distributions via importance sampling

@ Main idea: construct a sequence of intermediate distributions that
gradually interpolate from p(z) to the unnormalized estimate of p(z|x)

e For estimating p(x), first distribution is p(z) (with A7 = 1) and
second distribution is p(x|z) (with N> = p(x) = [ p(x,z)dz)

@ Gives unbiased estimates of likelihoods, but biased estimates of
log-likelihoods

@ A good implementation available in Tensorflow probability
tfp.mcmc.sample_annealed_importance_chain
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tfp.mcmc.sample_annealed_importance_chain

Evaluation - Sample quality

$1={x~P} S, = {x~Q}
Which of these two sets of generated samples “look” better?

Human evaluations (e.g., Mechanical Turk) are expensive, biased,
hard to reproduce

Generalization is hard to define and assess: memorizing the training
set would give excellent samples but clearly undesirable

Quantitative evaluation of a qualitative task can have many answers

Popular metrics: Inception Scores, Frechet Inception Distance, Kernel
Inception Distance
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Inception Scores

Assumption 1: We are evaluating sample quality for generative
models trained on labelled datasets

Assumption 2: We have a good probabilistic classifier c(y|x) for
predicting the label y for any point x

We want samples from a good generative model to satisfy two
criteria: sharpness and diversity

Sharpness (S)
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High sharpness implies classifier is confident in making predictions for
generated images

That is, classifier's predictive distribution c(y|x) has low entropy
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Inception Scores

o Diversity (D)
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D = (~Eucn | [ etz ety )

where c(y) = Ex~p[c(y|x)] is the classifier's marginal predictive
distribution

e High diversity implies c(y) has high entropy

@ Inception scores (IS) combine the two criteria of sharpness and
diversity into a simple metric

IS=DxS
@ Correlates well with human judgement in practice

o If classifier is not available, a classifier trained on a large dataset, e.g.,
Inception Net trained on the ImageNet dataset
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Frechet Inception Distance

@ Inception Scores only require samples from pg and do not take into
account the desired data distribution pgata directly (only implicitly via
a classifier)

o Frechet Inception Distance (FID) measures similarities in the
feature representations (e.g., those learned by a pretrained classifier)
for datapoints sampled from py and the test dataset

e Computing FID:

e Let G denote the generated samples and 7 denote the test dataset

o Compute feature representations Fg and Fy for G and T respectively
(e.g., prefinal layer of Inception Net)

o Fit a multivariate Gaussian to each of Fg and Fr. Let (ug,Xg) and
(w7, X7) denote the mean and covariances of the two Gaussians

o FID is defined as

FID = ||u7 — pg|? + Tr(Z7 + g — 2(X7Xg)Y?)

@ Lower FID implies better sample quality
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Kernel Inception Distance

e Maximum Mean Discrepancy (MMD) is a two-sample test
statistic that compares samples from two distributions p and g by
computing differences in their moments (mean, variances etc.)

o Key idea: Use a suitable kernel e.g., Gaussian to measure similarity
between points

MMD(p, q) = Exx/np[K (%, X'+ Exxmq[K (X, X' )] =2Exp xing[ K (%, X)]

o Intuitively, MMD is comparing the “similarity” between samples
within p and g individually to the samples from the mixture of p and g

o Kernel Inception Distance (KID): compute the MMD in the
feature space of a classifier (e.g., Inception Network)

e FID vs. KID

o FID is biased (can only be positive), KID is unbiased
o FID can be evaluated in O(n) time, KID evaluation requires O(n?) time
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Evaluating sample quality - Best practices

Are GANs Created Equal? A Large-Scale Study

Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, Olivier Bousquet

(Submitted on 28 Nov 2017 (v1), last revised 29 Oct 2018 (this version, v4))
Generative adversarial networks (GAN) are a powerful subclass of generative models. Despite a very rich research activity leading
to numerous interesting GAN algorithms, it is still very hard to assess which algorithm(s) perform better than others. We conduct
a neutral, multi-faceted large-scale empirical study on state-of-the art models and evaluation measures. We find that most
models can reach similar scores with enough hyperparameter optimization and random restarts. This suggests that improvements
can arise from a higher computational budget and tuning more than fundamental algorithmic changes. To overcome some
limitations of the current metrics, we also propose several data sets on which precision and recall can be computed. Our
experimental results suggest that future GAN research should be based on more systematic and objective evaluation procedures.

@ Spend time tuning your baselines (architecture, learning rate,

optimizer etc.). Be amazed (rather than dejected) at how well they
can perform

@ Use random seeds for reproducibility

@ Report results averaged over multiple random seeds along with
confidence intervals
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Evaluating latent representations

@ What does it mean to learn “good” latent representations?

@ For a downstream task, the representations can be evaluated based
on the corresponding performance metrics e.g., accuracy for
semi-supervised learning, reconstruction quality for denoising

@ For unsupervised tasks, there is no one-size-fits-all

@ Three commonly used notions for evaluating unsupervised latent
representations
o Clustering
o Compression
e Disentanglement
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Clustering

@ Representations that can group together points based on some
semantic attribute are potentially useful (e.g., semi-supervised
classification)

@ Clusters can be obtained by applying k-means or any other algorithm
in the latent space of generative model
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Source: Makhzaniet al., 2018

@ 2D representations learned by two generative models for MNIST
digits with colors denoting true labels. Which is better? B or D?
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ring

@ For labelled datasets, there exists many quantitative evaluation metrics

@ Note labels are only used for evaluation, not obtaining clusters itself (i.e.,
clustering is unsupervised)

@ from sklearn.metrics.cluster import completeness_score,
homogeneity,score, v_measure_score

@ Completeness score (between [0, 1]): maximized when all the data points
that are members of a given class are elements of the same cluster
completeness_score(labels_true=[0, O, 1, 1], labels_pred=[0,
1, 0, 11) %0

@ Homogeneity score (between [0, 1]): maximized when all of its clusters
contain only data points which are members of a single class
homogeneity_score(labels_true=[0, 0, 1, 1], labels pred=[1,
1, 0, 0) %1

@ V measure score (also called normalized mutual information, between [0,
1]): harmonic mean of completeness and homogeneity score
v_measure_score(labels_true=[0, 0, 1, 1], labels_pred=[1, 1,
0, 01 %1
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Compression

@ Latent representations can be evaluated based on the maximum
compression they can achieve without significant loss in
reconstruction accuracy
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Source: Santurkar et al., 2018

e Standard metrics such as Mean Squared Error (MSE), Peak Signal to
Noise Ratio (PSNR), Structure Similarity Index (SSIM)
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Disentanglement

@ Intuitively, we want representations that disentangle independent
and interpretable attributes of the observed data

(a) Skin colour
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Source: Higgins et al., 2018

@ Provide user control over the attributes of the generated data
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Source: Shu et al., 2019

(22.23)

o When Z; is fixed, size of the generated object never changes
e When Z; is changed, the change is restricted to the size of the
generated object
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Disentanglement

o Many quantitative evaluation metrics
o Beta-VAE metric (Higgins et al., 2017): Accuracy of a linear classifier
that predicts a fixed factor of variation
e Many other metrics: Factor-VAE metric, Mutual Information Gap, SAP
score, DCI disentanglement, Modularity
o Check disentanglement_lib for implementations of these metrics

@ Disentangling generative factors is theoretically impossible without
additional assumptions

Challenaing C A
Representations

ptions in the L vised Learning of Disentangled

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Rétsch, Sylvain Gelly, Bernhard Scholkopf, Olivier Bachem
(submitted on 29 Nov 2018 (v1), last revised 18 Jun 2019 (this version, v4)

The key idea behind the unsupervised learning of disentangled representations is that real-world data is generated by a few explanatory factors of variation which can
be recovered by unsupervised learning algorithms. In this paper, we provide a sober look at recent progress in the field and challenge some common assumptions. We
first theoretically show that the unsupervised learning gl is inductive biases on both the models and
the data. Then,we train more than 12000 models covering most prominent methods and evaluation metrcs n reproducible large-scale experimenta sudy on
seven different data sets. We observe that while the different methods successfully enforce properties **encouraged” by the corresponding losses, well-disentangled
models seemingly cannot be identified without supervision. Furthermore, increased disentanglement does not seem to lead to a decreased sample complexity of
learning for downstream tasks. Our results suggest that future work on disentanglement learning should be explicit about the role of inductive biases and (implicit)

supervision, investigate concrete benefits of enforcing disentanglement of the learned representations, and consider a reproducible experimental setup covering
several data sets.
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@ Quantitative evaluation of generative models is a challenging task

@ For downstream applications, one can rely on application-specific
metrics

@ For unsupervised evaluation, metrics can significantly vary based on
end goal: density estimation, sampling, latent representations
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