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Model family
Story so far

@ Representation: Latent variable vs. fully observed

@ Objective function and optimization algorithm: Many divergences and
distances optimized via likelihood-free (two sample test) or likelihood
based methods

@ Each have Pros and Cons

Plan for today: Combining models
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Variational Autoencoder

Image x

A mixture of an infinite number of Gaussians:
Q@ z~ N(0,/)
Q p(x|z) =N (o(z), Xo(z)) where 19, Xy are neural networks

@ p(x | z) and p(z) usually simple, e.g., Gaussians or conditionally
independent Bernoulli vars (i.e., pixel values chosen independently
given z)

Q Idea: increase complexity using an autoregressive model

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 12 3/19



PixelVAE (Gulrajani et al.,2017)
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Gulrajani et. al, 2017
@ z is a feature map with the same resolution as the image x
@ Autoregressive structure: p(x | z) =[], p(xj | x1,- -, xi—1,2)

o p(x|z)is a PixelCNN
o Prior p(z) can also be autoregressive
o Can be hierarchical: p(x | z1)p(z1 | z2)

@ State-of-the art log-likelihood on some datasets; learns features (unlike
PixelCNN); computationally cheaper than PixelCNN (shallower)
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Autoregressive flow

fo

@ Flow model, the marginal likelihood p(x) is given by

(529

where pz(z) is typically simple (e.g., a Gaussian). More complex
prior?

px(x;0) = pz (f;(x))

@ Prior pz(z) can be autoregressive pz(z) = [[; p(zi | z1,--- ,zi-1).
@ Autoregressive models are flows. Just another MAF layer.
@ See also neural autoregressive flows (Huang et al., ICML-18)
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VAE + Flow Model

log p(x;0) > > q(zlx; ¢)log p(z,x; 0) + H(q(z|x; $)) = L(x; 0, )
; ———
ELBO
logp(x;0) = L(x:0,9)+  Drula(z|x;¢)lp(z|x;0))
Gap between true log‘r—likelihood and ELBO

@ g(z|x; ¢) is often too simple (Gaussian) compared to the true
posterior p(z|x; 6), hence ELBO bound is loose

o ldea: Make posterior more flexible: 2’ ~ q(Z/|x; ¢), z = fy(2') for an
invertible fy (Rezende and Mohamed, 2015; Kingma et al., 2016)

@ Still easy to sample from, and can evaluate density.
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VAE + Flow Model

1 2

(a) Prior distribution (b) Posteriors in standard VAE (c¢) Posteriors in VAE with IAF

Posterior approximation is more flexible, hence we can get tighter ELBO
(closer to true log-likelihood).
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Multimodal variants
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(c) Fill in the Blank (d) R ng Watern

‘Wu and Goodman, 2018

@ Goal: Learn a joint distribution over the two domains p(x1, x2), e.g., color
and gray-scale images Can use a VAE style model:

@ Learn py(xi, x2), use inference nets qy(z | x1), q4(z | x2), Go(z | x1,x2).
Conceptually similar to semi-supervised VAE in HW2.
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Variational RNN

@ Goal: Learn a joint distribution over a sequence p(xy,--- ,xT)

@ VAE for sequential data, using latent variables z,--- , zr. Instead of
training separate VAEs z; — x;, train a joint model:

p(x<T,2<71) HP Xe | z<e, x<e)P(2e | Z<t, x<t)
(a) Prior (b) Generation ) Recurrence ) Inference

Chung et al, 2016
@ Use RNNs to model the conditionals (similar to PixelRNN)

@ Use RNNs for inference q(z<7|x<71) = Hthl q(z¢ | z<y, x<t)

@ Train like VAE to maximize ELBO. Conceptually similar to PixelVAE.
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Combining losses

@ Flow model, the marginal likelihood p(x) is given by

det <8f%1(x)> ‘

@ Can also be thought of as the generator of a GAN

px(x;0) = pz (f;(x))

@ Should we train by ming Dk (pdata, Po) or ming JSD(pdata, Po)?
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Objective | Inception Score | Test NLL (in bits/dim)
MLE 2.92 3.54
ADV 5.76 8.53

3.90 4.21

Hybrid (A = 1)

Interpolates between a GAN and a flow model
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Although Dy (pdatas pg) = 0 if and only if JSD(pgata, pg) = 0, optimizing
one does not necessarily optimize the other. If z, x have same dimensions,

can optimize ming KL(pasta, Po) + AJSD(Pasta: Po)
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Adversarial Autoencoder (VAE + GAN)

¢9

log p(x; 0) = L(x;0,8) +Dri(q(z | x; ¢)[lp(z]x; 0))
ELBO
Exnpgaa [£(X: 0, )] = Exmpy. [108 P(x;0) — Dri(q(z | x; @) || p(z|x; 0))]
—_————

~training obj.

up to const.

=7 Dy (pusta()1P(%: 0)) ~ Ex, [Dke (a2 | x: 9) [ p(2]; )]

equiv. to MLE

@ Note: regularized maximum likelihood estimation (Shu et al, Amortized
inference regularization)

@ Can add in a GAN objective —JSD(pgata, p(x; 0)) to get sharper samples,
i.e., discriminator attempting to distinguish VAE samples from real ones.
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An alternative interpretation

¢9
(%)

Ex~pyara [log p(x; 0) — D (a(z | x; ¢)||p(z[x; 0))]

Expgoes [£(X: 0, 9)]
— —————

~training obj.

up to const.

= Dt (Paata (0) 1P 0)) — Exupey [Dic (a2 | x: 9)p(2x; 0))]

_ _ %) [ log Pdata(X) 21 x; q(z | x; @)
= Zx:Pdata( )(I ( 0) +Zq( ‘ (b p(z|x;0) )

_ q(z | X; ¢)Pdata(X)
- ; Pdata(X) <¥ q(z | x; ¢) log p(zx;0)p(x;6)>

_ Pdata(x)q(z | x; ¢)
- XZZ: Pdata(X)q(z | x; ¢) log W
—Di1 (pdata(x)q(z | x; ) || p(x; 8) p(2]x; 8))

q(z,x;¢) p(z,%:0)
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An alternative interpretation
6--+-(2)——9

Ex~pyars [L(%: 0, &)l = —Dii(Paata(x)a(z | x; 9) || p(x; 0)p(z]x; 0))
N——

ELBO q(z,x;¢) p(z,x;0)

@ Optimizing ELBO is the same as matching the inference distribution
q(z, x; ¢) to the generative distribution p(z,x; 0) = p(z)p(x|z; )
@ Intuition: p(x; 8)p(z|x; 0) = paata(X)q(z | x; @) if
o pdata(x) = p(X; 0)
Q q(z | x; ¢) = p(z|x; 0) for all x
© Hence we get the VAE objective:
— Dk (Pdata(X)[|P(%; 0)) = Expones [Dici(a(z | x; 0) | p(2]x: 6))]
@ Many other variants are possible! VAE + GAN:
—J5D(pdata(x)Ip(x; 0)) — Dri(Pdata(X)1P(X; 8)) = Ex~pgara [Drr(q(z | x; ¢)llp(2x; 6))]
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Adversarial Autoencoder (VAE + GAN)

¢9
(&

Ex~pgara [L(X: 0, §)] = —Dii(Paata(x)a(z | x; 8) || p(x; 8)p(2|x; 0))
N——
ELBO q(z,x;¢) p(z,%;0)
@ Optimizing ELBO is the same as matching the inference distribution
q(z, x; ¢) to the generative distribution p(z, x; )

@ Symmetry: Using alternative factorization:
p(z)p(x|z;0) = q(z; 9)a(x | z; ¢) if
Q q(z ¢) = p(2)
Q q(x |z ¢) = p(x|z;0) for all z
© We get an equivalent form of the VAE objective:
—Dki(a(z: 9)l1p(2)) = Eznq(zis) [Dre(q(x | 2 6)l|p(x|2; 0))]
@ Other variants are possible. For example, can add —JSD(q(z; ¢)||p(2)) to
match features in latent space (Zhao et al., 2017; Makhzani et al, 2018)
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Information Preference

¢9
(%)

Exmpgata [£(X: 0, 9)] = =Dk (Paata(x)a(z | x; 8) || p(x; 8) p(2|x; 6))
——

ELBO q(z,%:¢) p(z,x:0)

@ ELBO is optimized as long as g(z, x; ¢) = p(z,x; 8). Many solutions are
possible! For example,
Q p(z,x;0) = p(2)p(x|z; ) = p(z)Pdata(x)
Q q(z, X; ¢) = pdata(x)q(z|X; ¢) = pdata(x)p(z)
© Note z and z are independent. z carries no information about x. This
happens in practice when p(x|z; 8) is too flexible, like Pixel CNN.

@ lIssue: Many more variables than constraints

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models

Lecture 12 16 /19



Information Maximizing

@ Explicitly add a mutual information term to the objective
—Dii(paata(x)a(z | x; ¢) || p(x; 0)p(z]x; 0)) + aMl(x, z)

q(z,x;) p(z,%;0)

@ Ml intuitively measures how far x and z are from being independent
Mi(x,2) = it (p(z, x:6)[Ip(2)p(x; 0))

@ InfoGAN (Chen et al, 2016) used to learn meaningful (disentangled?)
representations of the data

MI(x,2) — Expy [Di(Po(2[%) |9 (2[%))] = JSD(paata(x)]| o (x))
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CAY/\=

Model proposed to learn disentangled features (Higgins, 2016)

—Eqy(x2)[108 Po(x[2)] + BExnpysi, [Dii(a6(2[x)[[P(2))]

It is a VAE with scaled up KL divergence term. This is equivalent (up to
constants) to the following objective:

(8 = 1)MI(x; 2) + 5Dki(q¢(2)l|p(2))) + Eq, )[Pre(as(x2) [ pa(x]2))]

See The Information Autoencoding Family: A Lagrangian Perspective on
Latent Variable Generative Models for more examples.
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Conclusion

@ We have covered several useful building blocks: autoregressive, latent
variable models, flow models, GANs.

@ Can be combined in many ways to achieve different tradeoffs: many
of the models we have seen today were published in top ML
conferences in the last couple of years

@ Lots of room for exploring alternatives in your projects!

@ Which one is best? Evaluation is tricky. Still largely empirical
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