
Deep Learning Primer
Nishith Khandwala

Neural Networks

Overview

● Neural Network Basics

● Activation Functions

● Stochastic Gradient Descent (SGD)

● Regularization (Dropout)

● Training Tips and Tricks

Neural Network (NN) Basics

Dataset: (x, y) where x: inputs, y: labels

Steps to train a 1-hidden layer NN:

● Do a forward pass: ŷ = f(xW + b)
● Compute loss: loss(y, ŷ)
● Compute gradients using backprop
● Update weights using an optimization

algorithm, like SGD
● Do hyperparameter tuning on Dev set
● Evaluate NN on Test set

Activation Functions: Sigmoid

Properties:

● Squashes input between 0 and 1.

Problems:

● Saturation of neurons kills gradients.

● Output is not centered at 0.

Activation Functions: Tanh

Properties:

● Squashes input between -1 and 1.

● Output centered at 0.

Problems:

● Saturation of neurons kills gradients.

Activation Functions: ReLU

Properties:

● No saturation
● Computationally cheap
● Empirically known to converge faster

Problems:

● Output not centered at 0
● When input < 0, ReLU gradient is 0. Never

changes.

Stochastic Gradient Descent (SGD)

● Stochastic Gradient Descent (SGD)
○ 𝝷 : weights/parameters
○ 𝛂 : learning rate
○ J : loss function

● SGD update happens after every training
example.

● Minibatch SGD (sometimes also
abbreviated as SGD) considers a small
batch of training examples at once,
averages their loss and updates 𝝷.

Regularization: Dropout

● Randomly drop neurons at forward
pass during training.

● At test time, turn dropout off.
● Prevents overfitting by forcing

network to learn redundancies.

Think about dropout as training an
ensemble of networks.

Training Tips and Tricks

● Learning rate:
○ If loss curve seems to be unstable

(jagged line), decrease learning rate.
○ If loss curve appears to be “linear”,

increase learning rate.

very high learning rate

high learning rate

good learning rate

low learning rate

loss

● Regularization (Dropout, L2 Norm, …):
○ If the gap between train and dev

accuracies is large (overfitting),
increase the regularization constant.

DO NOT test your model on the test set until
overfitting is no longer an issue.

Training Tips and Tricks

Backpropagation and
Gradients

Slides courtesy of Barak Oshri

Problem Statement

Given a function f with respect to inputs x, labels y, and parameters 𝜃
compute the gradient of Loss with respect to 𝜃

Backpropagation

An algorithm for computing the gradient of a compound function as a
series of local, intermediate gradients

Backpropagation

1. Identify intermediate functions (forward prop)
2. Compute local gradients
3. Combine with upstream error signal to get full gradient

Modularity - Simple Example

Compound function

Intermediate Variables
(forward propagation)

Modularity - Neural Network Example

Compound function

Intermediate Variables
(forward propagation)

Intermediate Variables
(forward propagation)

Intermediate Gradients
(backward propagation)

Chain Rule Behavior

Key chain rule intuition:
Slopes multiply

Circuit Intuition

Backprop Menu for Success

1. Write down variable graph

2. Compute derivative of cost function

3. Keep track of error signals

4. Enforce shape rule on error signals

5. Use matrix balancing when deriving over a linear transformation

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201822

Convolutional Neural Networks

Slides courtesy of Justin Johnson, Serena Yeung, and Fei-Fei Li

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201823

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1
10

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201824

3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1

10 x 3072
weights

activationinput

1 number:
the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)

1
10

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201825

32

32

3

Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201826

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201827

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201828

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201829

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201830

32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201831

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201832

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

Fei-Fei Li & Justin Johnson & Serena Yeung April 17, 2018Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 17, 201833

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

RNNs, Language Models,
LSTMs, GRUs

Slides courtesy of Lisa Wang and Juhi Naik

RNNs

● Review of RNNs
● RNN Language Models
● Vanishing Gradient Problem
● GRUs
● LSTMs

RNN Review

Key points:

● Weights are shared (tied) across
timesteps (Wxh , Whh , Why)

● Hidden state at time t depends on
previous hidden state and new
input

● Backpropagation across
timesteps (use unrolled network)

RNN Review

RNNs are good for:

● Learning representations for
sequential data with temporal
relationships

● Predictions can be made at every
timestep, or at the end of a
sequence

RNN Language Model

● Language Modeling (LM): task of computing probability distributions over
sequence of words

● Important role in speech recognition, text summarization, etc.
● RNN Language Model:

RNN Language Model for Machine
Translation

● Encoder for source language
● Decoder for target language
● Different weights in encoder

and decoder sections of the
RNN (Could see them as two
chained RNNs)

Vanishing Gradient Problem

● Backprop in RNNs: recursive gradient call for hidden layer
● Magnitude of gradients of typical activation functions between 0 and 1.

● When terms less than 1, product can get small very quickly
● Vanishing gradients → RNNs fail to learn, since parameters barely update.
● GRUs and LSTMs to the rescue!

Gated Recurrent Units

● Reset gate, rt
● Update gate, zt
● rt and zt control long-term and

short-term dependencies
(mitigates vanishing gradients
problem)

Gated Recurrent Units (GRUs)

Gated Recurrent Units (GRUs)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTMs

● it: Input gate - How much does current
input matter

● ft: Input gate - How much does past
matter

● ot: Output gate - How much should
current cell be exposed

● ct: New memory - Memory from
current cell

LSTMs

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Acknowledgements

● Slides adapted from:
○ Barak Oshri, Lisa Wang, and Juhi Naik (CS224N, Winter 2017)
○ Justin Johnson, Serena Yeung, and Fei-Fei Li (CS231N, Spring 2018)

● Andrej Karpathy, Research Scientist, OpenAI
● Christopher Olah, Research Scientist, Google Brain

