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Neural Networks



Overview

● Neural Network Basics

● Activation Functions

● Stochastic Gradient Descent (SGD)

● Regularization (Dropout)

● Training Tips and Tricks



Neural Network (NN) Basics

Dataset: (x, y) where x: inputs, y: labels

Steps to train a 1-hidden layer NN:

● Do a forward pass: ŷ = f(xW + b)
● Compute loss: loss(y, ŷ)
● Compute gradients using backprop
● Update weights using an optimization 

algorithm, like SGD
● Do hyperparameter tuning on Dev set
● Evaluate NN on Test set



Activation Functions: Sigmoid

Properties:

● Squashes input between 0 and 1.

Problems:

● Saturation of neurons kills gradients.

● Output is not centered at 0.



Activation Functions: Tanh

Properties:

● Squashes input between -1 and 1.

● Output centered at 0.

Problems:

● Saturation of neurons kills gradients.



Activation Functions: ReLU

Properties:

● No saturation
● Computationally cheap
● Empirically known to converge faster

Problems:

● Output not centered at 0
● When input < 0, ReLU gradient is 0. Never 

changes.



Stochastic Gradient Descent (SGD)

● Stochastic Gradient Descent (SGD)
○ 𝝷 : weights/parameters
○ 𝛂 : learning rate
○ J : loss function

● SGD update happens after every training 
example.

● Minibatch SGD (sometimes also 
abbreviated as SGD) considers a small 
batch of training examples at once, 
averages their loss and updates 𝝷.



Regularization: Dropout

● Randomly drop neurons at forward 
pass during training.

● At test time, turn dropout off.
● Prevents overfitting by forcing 

network to learn redundancies.

Think about dropout as training an 
ensemble of networks.



Training Tips and Tricks

● Learning rate:
○ If loss curve seems to be unstable 

(jagged line), decrease learning rate.
○ If loss curve appears to be “linear”, 

increase learning rate.

very high learning rate

high learning rate

good learning rate

low learning rate

loss



● Regularization (Dropout, L2 Norm, … ):
○ If the gap between train and dev 

accuracies is large (overfitting), 
increase the regularization constant.

DO NOT test your model on the test set until 
overfitting is no longer an issue.

Training Tips and Tricks



Backpropagation and 
Gradients

Slides courtesy of Barak Oshri



Problem Statement

Given a function f with respect to inputs x, labels y, and parameters 𝜃
compute the gradient of Loss with respect to 𝜃



Backpropagation

An algorithm for computing the gradient of a compound function as a 
series of local, intermediate gradients



Backpropagation

1. Identify intermediate functions (forward prop)
2. Compute local gradients
3. Combine with upstream error signal to get full gradient



Modularity - Simple Example

Compound function

Intermediate Variables
(forward propagation)



Modularity - Neural Network Example

Compound function

Intermediate Variables
(forward propagation)



Intermediate Variables
(forward propagation)

Intermediate Gradients
(backward propagation)



Chain Rule Behavior

Key chain rule intuition: 
Slopes multiply



Circuit Intuition



Backprop Menu for Success

1. Write down variable graph

2. Compute derivative of cost function

3. Keep track of error signals

4. Enforce shape rule on error signals

5. Use matrix balancing when deriving over a linear transformation
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Convolutional Neural Networks

Slides courtesy of Justin Johnson, Serena Yeung, and Fei-Fei Li
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3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1
10
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3072
1

Fully Connected Layer
32x32x3 image -> stretch to 3072 x 1 

10 x 3072 
weights

activationinput

1 number: 
the result of taking a dot product 
between a row of W and the input 
(a 3072-dimensional dot product)

1
10
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32

32
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Convolution Layer
32x32x3 image -> preserve spatial structure

width

height

depth
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

1 number: 
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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32

32

3

Convolution Layer
32x32x3 image
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter
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32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6 
5x5x3 
filters
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Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

CONV,
ReLU
e.g. 6 
5x5x3 
filters 28

28

6

CONV,
ReLU
e.g. 10 
5x5x6 
filters

CONV,
ReLU

….
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RNNs, Language Models, 
LSTMs, GRUs

Slides courtesy of Lisa Wang and Juhi Naik



RNNs

● Review of RNNs
● RNN Language Models
● Vanishing Gradient Problem
● GRUs
● LSTMs



RNN Review

Key points:

● Weights are shared (tied) across 
timesteps (Wxh , Whh , Why )

● Hidden state at time t depends on 
previous hidden state and new 
input

● Backpropagation across 
timesteps (use unrolled network)



RNN Review

RNNs are good for:

● Learning representations for 
sequential data with temporal 
relationships

● Predictions can be made at every 
timestep, or at the end of a 
sequence



RNN Language Model

● Language Modeling (LM): task of computing probability distributions over 
sequence of words 

● Important role in speech recognition, text summarization, etc.
● RNN Language Model:



RNN Language Model for Machine 
Translation

● Encoder for source language
● Decoder for target language
● Different weights in encoder 

and decoder sections of the 
RNN (Could see them as two 
chained RNNs)



Vanishing Gradient Problem

● Backprop in RNNs: recursive gradient call for hidden layer
● Magnitude of gradients of typical activation functions between 0 and 1.

● When terms less than 1, product can get small very quickly
● Vanishing gradients → RNNs fail to learn, since parameters barely update. 
● GRUs and LSTMs to the rescue!



Gated Recurrent Units

● Reset gate, rt
● Update gate, zt
● rt  and zt control long-term and 

short-term dependencies 
(mitigates vanishing gradients 
problem)

Gated Recurrent Units (GRUs)



Gated Recurrent Units (GRUs)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


LSTMs

● it: Input gate - How much does current 
input matter

● ft: Input gate - How much does past 
matter

● ot: Output gate - How much should 
current cell be exposed

● ct: New memory - Memory from 
current cell



LSTMs

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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