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Recap

Model families

Autoregressive Models: pθ(x) =
∏n

i=1 pθ(xi |x<i )
Variational Autoencoders: pθ(x) =

∫
pθ(x, z)dz

Normalizing Flow Models: pX (x; θ) = pZ
(
f−1
θ (x)

) ∣∣∣det(∂f−1
θ (x)
∂x

)∣∣∣
All the above families are based on maximizing likelihoods (or
approximations)

Is the likelihood a good indicator of the quality of samples generated
by the model?
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Towards likelihood-free learning

Case 1: Optimal generative model will give best sample quality and
highest test log-likelihood

For imperfect models, achieving high log-likelihoods might not always
imply good sample quality, and vice-versa (Theis et al., 2016)
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Towards likelihood-free learning

Case 2: Great test log-likelihoods, poor samples. E.g., For a discrete
noise mixture model pθ(x) = 0.01pdata(x) + 0.99pnoise(x)

99% of the samples are just noise
Taking logs, we get a lower bound

log pθ(x) = log[0.01pdata(x) + 0.99pnoise(x)]

≥ log 0.01pdata(x) = log pdata(x)− log 100

For expected likelihoods, we know that

Lower bound

Epdata [log pθ(x)] ≥ Epdata [log pdata(x)]− log 100

Upper bound (via non-negativity of KL)

Epdata [log pdata(x))] ≥ Epdata [log pθ(x)]
As we increase the dimension of x, absolute value of log pdata(x)
increases proportionally but log 100 remains constant. Hence,
Epdata

[log pθ(x)] ≈ Epdata
[log pdata(x)] in very high dimensions
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Towards likelihood-free learning

Case 3: Great samples, poor test log-likelihoods. E.g., Memorizing
training set

Samples look exactly like the training set (cannot do better!)
Test set will have zero probability assigned (cannot do worse!)

The above cases suggest that it might be useful to disentangle
likelihoods and samples

Likelihood-free learning consider objectives that do not depend
directly on a likelihood function
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Comparing distributions via samples

Given a finite set of samples from two distributions S1 = {x ∼ P} and
S2 = {x ∼ Q}, how can we tell if these samples are from the same
distribution? (i.e., P = Q?)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 9 6 / 23



Two-sample tests

Given S1 = {x ∼ P} and S2 = {x ∼ Q}, a two-sample test
considers the following hypotheses

Null hypothesis H0: P = Q
Alternate hypothesis H1: P 6= Q

Test statistic T compares S1 and S2 e.g., difference in means,
variances of the two sets of samples

If T is less than a threshold α, then accept H0 else reject it

Key observation: Test statistic is likelihood-free since it does not
involve P or Q (only samples)
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Generative modeling and two-sample tests

Apriori we assume direct access to S1 = D = {x ∼ pdata}
In addition, we have a model distribution pθ

Assume that the model distribution permits efficient sampling (e.g.,
directed models). Let S2 = {x ∼ pθ}
Alternate notion of distance between distributions: Train the
generative model to minimize a two-sample test objective between S1
and S2
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Two-Sample Test via a Discriminator

Finding a two-sample test objective in high dimensions is hard

In the generative model setup, we know that S1 and S2 come from
different distributions pdata and pθ respectively

Key idea: Learn a statistic that maximizes a suitable notion of
distance between the two sets of samples S1 and S2
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Generative Adversarial Networks

A two player minimax game between a generator and a
discriminator

x

z

Gθ

Generator
Directed, latent variable model with a deterministic mapping between z
and x given by Gθ
Minimizes a two-sample test objective (in support of the null
hypothesis pdata = pθ)
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Generative Adversarial Networks

A two player minimax game between a generator and a discriminator

x

y

Dφ

Discriminator
Any function (e.g., neural network) which tries to distinguish “real”
samples from the dataset and “fake” samples generated from the model
Maximizes the two-sample test objective (in support of the alternate
hypothesis pdata 6= pθ)
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Example of GAN objective

Training objective for discriminator:

max
D

V (G ,D) = Ex∼pdata [logD(x)] + Ex∼pG [log(1− D(x))]

For a fixed generator G , the discriminator is performing binary
classification with the cross entropy objective

Assign probability 1 to true data points x ∼ pdata
Assing probability 0 to fake samples x ∼ pG

Optimal discriminator

D∗
G (x) =

pdata(x)

pdata(x) + pG (x)
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Example of GAN objective

Training objective for generator:

min
G

V (G ,D) = Ex∼pdata [logD(x)] + Ex∼pG [log(1− D(x))]

For the optimal discriminator D∗
G (·), we have

V (G ,D∗
G (x))

= Ex∼pdata

[
log pdata(x)

pdata(x)+pG (x)

]
+ Ex∼pG

[
log pG (x)

pdata(x)+pG (x)

]
= Ex∼pdata

[
log pdata(x)

pdata(x)+pG (x)

2

]
+ Ex∼pG

[
log pG (x)

pdata(x)+pG (x)

2

]
− log 4

= DKL

[
pdata,

pdata + pG
2

]
+ DKL

[
pG ,

pdata + pG
2

]
︸ ︷︷ ︸

2×Jenson-Shannon Divergence (JSD)

− log 4

= 2DJSD [pdata, pG ]− log 4
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Jenson-Shannon Divergence

Also called as the symmetric KL divergence

DJSD [p, q] =
1

2

(
DKL

[
p,

p + q

2

]
+ DKL

[
q,

p + q

2

])
Properties

DJSD [p, q] ≥ 0
DJSD [p, q] = 0 iff p = q
DJSD [p, q] = DJSD [q, p]√
DJSD [p, q] satisfies triangle inequality → Jenson-Shannon Distance

Optimal generator for the JSD/Negative Cross Entropy GAN

pG = pdata

For the optimal discriminator D∗
G∗(·) and generator G ∗(·), we have

V (G ∗,D∗
G∗(x)) = − log 4
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The GAN training algorithm

Sample minibatch of m training points x(1), x(2), . . . , x(m) from D
Sample minibatch of m noise vectors z(1), z(2), . . . , z(m) from pz

Update the generator parameters θ by stochastic gradient descent

∇θV (Gθ,Dφ) =
1

m
∇θ

m∑
i=1

log(1− Dφ(Gθ(z(i))))

Update the discriminator parameters φ by stochastic gradient ascent

∇φV (Gθ,Dφ) =
1

m
∇φ

m∑
i=1

[logDφ(x(i)) + log(1− Dφ(Gθ(z(i))))]

Repeat for fixed number of epochs
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Alternating optimization in GANs

min
θ

max
φ

V (Gθ,Dφ) = Ex∼pdata [logDφ(x)] + Ez∼p(z)[log(1− Dφ(Gθ(z)))]
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Which one is real?

Both images are generated via GANs!
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Frontiers in GAN research

GANs have been successfully applied to several domains and tasks

However, working with GANs can be very challenging in practice

Unstable optimization
Mode collapse
Evaluation

Many bag of tricks applied to train GANs successfully
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Optimization challenges

Theorem (informal): If the generator updates are made in function
space and discriminator is optimal at every step, then the generator is
guaranteed to converge to the data distribution

Unrealistic assumptions!

In practice, the generator and discriminator loss keeps oscillating
during GAN training

No robust stopping criteria in practice (unlike likelihood based
learning)
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Mode Collapse

GANs are notorious for suffering from mode collapse

Intuitively, this refers to the phenomena where the generator of a
GAN collapses to one or few samples (dubbed as “modes”)
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Mode Collapse

True distribution is a mixture of Gaussians

The generator distribution keeps oscillating between different modes
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Mode Collapse

Fixes to mode collapse are mostly empirically driven: alternate
architectures, adding regularization terms, injecting small noise
perturbations etc.

https://github.com/soumith/ganhacks

How to Train a GAN? Tips and tricks to make GANs work by
Soumith Chintala
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Beauty lies in the eyes of the discriminator

GAN generated art auctioned at Christie’s.
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