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Recap of normalizing flow models

So far

@ Directed, invertible latent variable models with marginal likelihood
given by the change of variables formula

@ Triangular Jacobian permits efficient evaluation of log-likelihoods
@ Several approaches to define invertible transformations

Plan for today
@ Autoregressive Models as Normalizing Flow Models

@ Probability density distillation for efficient learning and inference in
Parallel Wavenet
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Real-NVP: Non-volume preserving extension of NICE

@ Forward mapping z — x:
o X1.4 = 21,4 (identity transformation)
® Xdi1n = Zd+1:n0 © exp(ap(z1:d)) + po(21.0)
o pg(-) and ag(-) are both neural networks with parameters 6, d input
units, and n — d output units [®: elementwise product]
@ Inverse mapping x — z:
o 21,4 = X1.4 (identity transformation)
® Zgi1:0 = (Xd+1:0 — po(X1:0)) © (exp(—ap(X1:4)))
@ Jacobian of forward mapping:

1= 2 0
"o\ s desteotonter))

det(J) = H exp(ag(z1:q)i) = exp < Z ae(zl;d),)

i=d+1 i=d+1

@ Non-volume preserving transformation in general since determinant can
be less than or greater than 1
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Samples generated via Real-NVP
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Latent space interpolations via Real-NVP

Using with four validation examples z(1), z(2) z(3) z(*) define interpolated
z as:

z = cos(zM cos¢ + 2P sing’) + sing(z cosd’ + 2 sing)

with manifold parameterized by ¢ and ¢'.
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Autoregressive models as flow models

o Consider a Gausian autoregressive model:
n
p(x) = [ [ p(xilx<i)
i=1

such that p(x; | x<i) = N(pi(x1, -, xi—1), exp(ei(xa, -+, xi-1))?).
Here, u(-) and «;(-) are neural networks for i > 1 and constants for
i=1.

@ Sampler for this model:

Sample u; ~ N(0,1) fori=1,---,n

o Let x; = exp(ay)uy + p1. Compute po(x1), aa(xq)

o Let xp = exp(an)uz + pp. Compute ps(x1, x2), az(xi, x2)

o Let x3 = exp(asz)us + p3. ...

o Flow interpretation: transforms samples from the standard Gaussian
(u1, uz, ..., u,) to those generated from the model (x1,x2,...,x,) via
invertible transformations (parameterized by wu;(+), «;(+))
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Stefano Ermon, Aditya Grover (Al Lab)

Masked Autoregressive Flow (MAF)

i = u; - exp(ei) + Vi=1...n
transformed
distribution | X | X, || X,

base
distribution nn

Source: Eric Jang's blog

@ Forward mapping from u — x:

o Let x; = exp(ay)uy + p1. Compute po(x1), aa(x1)
o Let x; = exp(az)uz + pa. Compute psz(x1,x2), as(x1, x2)

e Sampling is sequential and slow (like autoregressive): O(n) time
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Masked Autoregressive Flow (MAF)

transformed
distribution | X - ¥,

Hi

base

distribution | U

u

o] u]-[or]

uy = (z; — ) -exp(—a;) Vi=1l...n

' L |-

@ Inverse mapping from x — u:

Compute all p;, «; (can be done in parallel using e.g., MADE)

Let 3 = (31 — p1)/ exp(az) (scale and shift)

Let up = (x2 — p2)/ exp(a2)

Let uz = (x3 — p3)/ exp(as) ...

@ Jacobian is lower diagonal, hence determinant can be computed
efficiently

o Likelihood evaluation is easy and parallelizable (like MADE)
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Inverse Autoregressive Flow (IAF)

T = exp(u Vl—l
transformed
distribution H
Hi

S [0 - -]

@ Forward mapping from u — x (parallel):

Sample u; ~ N(0,1) fori=1,---,n
Compute all p;, «; (can be done in parallel)
Let x3 = exp(a1)uy + 11

Let xo = exp(an)uz + 1 ...

@ Inverse mapping from x — u (sequential):

o Let uy = (x1 — 1)/ exp(ar). Compute po(uy), an(ur)
o Let up = (32 — o)/ exp(an). Compute psz(u1, u2), as(ur, uz)

@ Fast to sample from, slow to evaluate likelihoods of data points (train)

@ Note: Fast to evaluate likelihoods of a generated point (cache uy, ua, ..., up)
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IAF is inverse of MAF

transformed )
distribution | X; | X, | XHl X, ‘ xi = u; - exp(o;) + Vi=1...n
N | transformed
distribution | X; | X, || Xy [ X [=] X
i
i

base
distribution | U, | U, u, |y |-

base

w=(z;— 1) exp(—a;) Yi=1...n distribution | Uy | Uy |~ U | U fef U

Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

@ Interchanging u and x in the inverse transformation of MAF gives the
forward transformation of IAF

@ Similarly, forward transformation of MAF is inverse transformation of
IAF
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|IAF vs. MAF

o Computational tradeoffs

o MAF: Fast likelihood evaluation, slow sampling
o IAF: Fast sampling, slow likelihood evaluation

MAF more suited for training based on MLE, density estimation

IAF more suited for real-time generation

Can we get the best of both worlds?
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Parallel Wavenet

@ Two part training with a teacher and student model

@ Teacher is parameterized by MAF. Teacher can be efficiently trained
via MLE

@ Once teacher is trained, initialize a student model parameterized by
IAF. Student model cannot efficiently evaluate density for external
datapoints but allows for efficient sampling

o Key observation: |IAF can also efficiently evaluate densities of its
own generations (via caching the noise variates uy, u2, ..., up)
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Parallel Wavenet

o Probability density distillation: Student distribution is trained to
minimize the KL divergence between student (s) and teacher (t)

Dk1(s, t) = Exvs[log s(x) — log t(x)]

@ Evaluating and optimizing Monte Carlo estimates of this objective
requires:
e Samples x from student model (IAF)
e Density of x assigned by student model
o Density of x assigned by teacher model (MAF)

@ All operations above can be implemented efficiently
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Parallel Wavenet: Overall algorithm

@ Training
o Step 1: Train teacher model (MAF) via MLE
e Step 2: Train student model (IAF) to minimize KL divergence with
teacher

o Test-time: Use student model for testing

e Improves sampling efficiency over original Wavenet (vanilla
autoregressive model) by 1000x!
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Summary of Normalizing Flow Models

@ Transform simple distributions into more complex distributions via
change of variables

@ Jacobian of transformations should have tractable determinant for
efficient learning and density estimation

@ Computational tradeoffs in evaluating forward and inverse
transformations
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