
Normalizing Flow Models

Stefano Ermon, Aditya Grover

Stanford University

Lecture 8

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 1 / 15



Recap of normalizing flow models

So far

Directed, invertible latent variable models with marginal likelihood
given by the change of variables formula

Triangular Jacobian permits efficient evaluation of log-likelihoods

Several approaches to define invertible transformations

Plan for today

Autoregressive Models as Normalizing Flow Models

Probability density distillation for efficient learning and inference in
Parallel Wavenet

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 2 / 15



Real-NVP: Non-volume preserving extension of NICE

Forward mapping z 7→ x:
x1:d = z1:d (identity transformation)
xd+1:n = zd+1:n � exp(αθ(z1:d)) + µθ(z1:d)
µθ(·) and αθ(·) are both neural networks with parameters θ, d input
units, and n − d output units [�: elementwise product]

Inverse mapping x 7→ z:
z1:d = x1:d (identity transformation)
zd+1:n = (xd+1:n − µθ(x1:d))� (exp(−αθ(x1:d)))

Jacobian of forward mapping:

J =
∂x

∂z
=

(
Id 0

∂xd+1:n

∂z1:d
diag(exp(αθ(z1:d)))

)

det(J) =
n∏

i=d+1

exp(αθ(z1:d)i ) = exp

(
n∑

i=d+1

αθ(z1:d)i

)

Non-volume preserving transformation in general since determinant can
be less than or greater than 1

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 3 / 15



Samples generated via Real-NVP

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 4 / 15



Latent space interpolations via Real-NVP

Using with four validation examples z(1), z(2), z(3), z(4), define interpolated
z as:

z = cosφ(z(1)cosφ′ + z(2)sinφ′) + sinφ(z(3)cosφ′ + z(4)sinφ′)

with manifold parameterized by φ and φ′.
Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 5 / 15



Autoregressive models as flow models

Consider a Gausian autoregressive model:

p(x) =
n∏

i=1

p(xi |x<i )

such that p(xi | x<i ) = N (µi (x1, · · · , xi−1), exp(αi (x1, · · · , xi−1))2).
Here, µi (·) and αi (·) are neural networks for i > 1 and constants for
i = 1.

Sampler for this model:

Sample ui ∼ N (0, 1) for i = 1, · · · , n
Let x1 = exp(α1)u1 + µ1. Compute µ2(x1), α2(x1)
Let x2 = exp(α2)u2 + µ2. Compute µ3(x1, x2), α3(x1, x2)
Let x3 = exp(α3)u3 + µ3. ...

Flow interpretation: transforms samples from the standard Gaussian
(u1, u2, . . . , un) to those generated from the model (x1, x2, . . . , xn) via
invertible transformations (parameterized by µi (·), αi (·))

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 6 / 15



Masked Autoregressive Flow (MAF)

Forward mapping from u 7→ x:

Let x1 = exp(α1)u1 + µ1. Compute µ2(x1), α2(x1)
Let x2 = exp(α2)u2 + µ2. Compute µ3(x1, x2), α3(x1, x2)

Sampling is sequential and slow (like autoregressive): O(n) time

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 7 / 15



Masked Autoregressive Flow (MAF)

Inverse mapping from x 7→ u:
Compute all µi , αi (can be done in parallel using e.g., MADE)
Let u1 = (x1 − µ1)/ exp(α1) (scale and shift)
Let u2 = (x2 − µ2)/ exp(α2)
Let u3 = (x3 − µ3)/ exp(α3) ...

Jacobian is lower diagonal, hence determinant can be computed
efficiently

Likelihood evaluation is easy and parallelizable (like MADE)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 8 / 15



Inverse Autoregressive Flow (IAF)

Forward mapping from u 7→ x (parallel):

Sample ui ∼ N (0, 1) for i = 1, · · · , n
Compute all µi , αi (can be done in parallel)
Let x1 = exp(α1)u1 + µ1

Let x2 = exp(α2)u2 + µ2 ...

Inverse mapping from x 7→ u (sequential):

Let u1 = (x1 − µ1)/ exp(α1). Compute µ2(u1), α2(u1)
Let u2 = (x2 − µ2)/ exp(α2). Compute µ3(u1, u2), α3(u1, u2)

Fast to sample from, slow to evaluate likelihoods of data points (train)

Note: Fast to evaluate likelihoods of a generated point (cache u1, u2, . . . , un)
Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 9 / 15



IAF is inverse of MAF

Figure: Inverse pass of MAF (left) vs. Forward pass of IAF (right)

Interchanging u and x in the inverse transformation of MAF gives the
forward transformation of IAF

Similarly, forward transformation of MAF is inverse transformation of
IAF

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 10 / 15



IAF vs. MAF

Computational tradeoffs

MAF: Fast likelihood evaluation, slow sampling
IAF: Fast sampling, slow likelihood evaluation

MAF more suited for training based on MLE, density estimation

IAF more suited for real-time generation

Can we get the best of both worlds?

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 11 / 15



Parallel Wavenet

Two part training with a teacher and student model

Teacher is parameterized by MAF. Teacher can be efficiently trained
via MLE

Once teacher is trained, initialize a student model parameterized by
IAF. Student model cannot efficiently evaluate density for external
datapoints but allows for efficient sampling

Key observation: IAF can also efficiently evaluate densities of its
own generations (via caching the noise variates u1, u2, . . . , un)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 12 / 15



Parallel Wavenet

Probability density distillation: Student distribution is trained to
minimize the KL divergence between student (s) and teacher (t)

DKL(s, t) = Ex∼s [log s(x)− log t(x)]

Evaluating and optimizing Monte Carlo estimates of this objective
requires:

Samples x from student model (IAF)
Density of x assigned by student model
Density of x assigned by teacher model (MAF)

All operations above can be implemented efficiently

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 13 / 15



Parallel Wavenet: Overall algorithm

Training

Step 1: Train teacher model (MAF) via MLE
Step 2: Train student model (IAF) to minimize KL divergence with
teacher

Test-time: Use student model for testing

Improves sampling efficiency over original Wavenet (vanilla
autoregressive model) by 1000x!

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 14 / 15



Summary of Normalizing Flow Models

Transform simple distributions into more complex distributions via
change of variables

Jacobian of transformations should have tractable determinant for
efficient learning and density estimation

Computational tradeoffs in evaluating forward and inverse
transformations

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 8 15 / 15


