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Recap of likelihood-based learning so far:
'
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@ Model families:
o Autoregressive Models: py(x) = []i_; po(xi|x<;)
o Variational Autoencoders: py(x) = [ py(x,z)dz
@ Autoregressive models provide tractable likelihoods but no direct
mechanism for learning features
@ Variational autoencoders can learn feature representations (via latent
variables z) but have intractable marginal likelihoods
o Key question: Can we design a latent variable model with tractable
likelihoods? Yes!
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Simple Prior to Complex Data Distributions

@ Desirable properties of any model distribution:
o Analytic density
o Easy-to-sample
@ Many simple distributions satisfy the above properties e.g., Gaussian,
uniform distributions
@ Unfortunately, data distributions could be much more complex
(multi-modal)
e Key idea: Map simple distributions (easy to sample and evaluate
densities) to complex distributions (learned via data) using change of
variables.
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Change of Variables formula

o Let Z be a uniform random variable ¢[0, 2] with density pz. What is
pz(1)? 3

Let X = 4Z, and let px be its density. What is px(4)?

px(4) =p(X=4)=p(4Z=4)=p(Z=1)=pz(1) =1/2 No
Clearly, X is uniform in [0, 8], so px(4) =1/8
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Change of Variables formula

e Change of variables (1D case): If X = f(Z) and f(-) is monotone
with inverse Z = f~1(X) = h(X), then:

px(x) = pz(h(x))|H (x)|

o Previous example: If X =4Z and Z ~ U[0,2], what is px(4)?
e Note that h(X) = X/4
o px(4) =pz(1)N(4)=1/2x1/4=1/8
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Geometry: Determinants and volumes

Let Z be a uniform random vector in [0, 1]”

Let X = AZ for a square invertible matrix A, with inverse W = A~L
How is X distributed?

o Geometrically, the matrix A maps the unit hypercube [0,1]” to a
parallelotope

Hypercube and parallelotope are generalizations of square/cube and
parallelogram/parallelopiped to higher dimensions

(a+c,b+d)

(0,1) (1.1)
(0,0) 10 (0,0)
. . a c .
Figure: The matrix A = b 4 ) Mapsa unit square to a parallelogram
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Geometry: Determinants and volumes

@ The volume of the parallelotope is equal to the determinant of the
transformation A

det(A):det(z §>:ad—bc

@ X is uniformly distributed over the parallelotope. Hence, we have

px(x) = pz (Wx) |det(W)|
pz (Wx) / |det(A)]
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Generalized change of variables

@ For linear transformations specified via A, change in volume is given
by the determinant of A
@ For non-linear transformations f(-), the linearized change in volume is
given by the determinant of the Jacobian of f(-).
e Change of variables (General case): The mapping between Z and
X, given by f : R" — R", is invertible such that X = f(Z) and
Z =f1(X).
-1
px(x) = pz (F1(x)) ‘det <8f8(x)>‘
X
@ Note 1: x,z need to be continuous and have the same dimension. For
example, if x € R” then z € R”
@ Note 2: For any invertible matrix A, det(A~!) = det(A)~*

det (i”) B

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 7 8/21

px(x) = pz (z)




Two Dimensional Example

o Let Z1 and Z> be continuous random variables with joint density
Pz,z,-

o Let u= (u1, u2) be a transformation

o Let v = (vi, v2) be the inverse transformation

o Let X1 = u1(Z41, Z2) and Xo = up(Z1, Z2) Then, Z3 = vi(X1, X2) and
Zy = va(X1, X2)

PX1,X%> (X17 X2

Ovi(x1,x2)  Ovi(x1,x2)
= pz,2(vi(x1, %), va(x1, x2)) [det | 5,08 v 5,020y || (inverse)
Ox1 Ox2
8U1(Z]_,22) 8U1(21,22) -1
— 0z oz
- pZ1,ZQ(Zla 22) det Buz(zll,zz) au2(212722) (forward)
0z1 0z
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Normalizing flow models

@ Consider a directed, latent-variable model over observed variables X
and latent variables Z

@ In a normalizing flow model, the mapping between Z and X, given

by fy : R” — R", is deterministic and invertible such that X = f»(2)
and Z = f; 1(X)

e Using change of variables, the marginal likelihood p(x) is given by

px(x;0) = pz (£, 1(x)) |det <8f9_8x(x)> ‘

@ Note: x,z need to be continuous and have the same dimension.
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A Flow of Transformations

Normalizing: Change of variables gives a normalized density after
applying an invertible transformation
Flow: Invertible transformations can be composed with each other

x 2z = £ o0 f(z0) = B (- (F(20)))) 2 Falzo)

e Start with a simple distribution for zy (e.g., Gaussian)

@ Apply a sequence of M invertible transformations

px(x:0) = pz (f; 1 (x)) ﬁl det <8(§nn)71)'

(determininant of product equals product of determinants)
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Planar flows

e Planar flow (Rezende & Mohamed, 2016). Invertible transformation
x = f3(z) =z + uh(w'z + b)

parameterized by 6§ = (w, u, b) where h(-) is a non-linearity
@ Absolute value of the determinant of the Jacobian is given by

ofy(2)

z

‘det ’ = ‘det(/ +hH(w'z+ b)uwT)‘
= ‘1 +h(w'z+ b)uTw‘

(matrix determinant lemma)

@ Need to restrict parameters and non-linearity for the mapping to be
invertible. For example, h = tanh() and H'(w'z+ b)u’w > —1

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 7 12 /21



Planar flows

@ Base distribution: Gaussian

Zy M=1 M=2
@ Base distribution: Uniform
- k‘ ‘ < -

@ 10 planar transformations can transform simple distributions into a
more complex one

Unit Gaussian

Uniform
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Learning and Inference

@ Learning via maximum likelihood over the dataset D

det <8f%l(x)> ‘

@ Exact likelihood evaluation via inverse tranformation x — z and
change of variables formula

max log px(D;0) = ) log pz (f;(x)) + log
xeD

@ Sampling via forward transformation z — x
z~pz(z) x="fy(z2)

e Latent representations inferred via inverse transformation (no
inference network required!)

z= fa_l(x)
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Desiderata for flow models

e Simple prior pz(z) that allows for efficient sampling and tractable
likelihood evaluation. E.g., isotropic Gaussian
@ Invertible transformations with tractable evaluation:
o Likelihood evaluation requires efficient evaluation of x — z mapping
e Sampling requires efficient evaluation of z — x mapping
@ Computing likelihoods also requires the evaluation of determinants of
n X n Jacobian matrices, where n is the data dimensionality

o Computing the determinant for an n x n matrix is O(n®): prohibitively
expensive within a learning loop!

o Key idea: Choose tranformations so that the resulting Jacobian matrix
has special structure. For example, the determinant of a triangular
matrix is the product of the diagonal entries, i.e., an O(n) operation
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Triangular Jacobian

X = (Xla ce ,Xn) = f(z) = (fl(z)7 T ’f"(z))

of .. o

af 821 Ozn
J:*: . .. CEEREY B
0z o, .. of
0z1 0zn

Suppose x; = fi(z) only depends on z<;. Then

on .,
6f 0z1 0
J=—=
0z o ... 0
0z1 0z,

has lower triangular structure. Determinant can be computed in linear
time. Similarly, the Jacobian is upper triangular if x; only depends on z>;
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Designing invertible transformations

NICE or Nonlinear Independent Components Estimation (Dinh et al.,
2014) composes two kinds of invertible transformations: additive
coupling layers and rescaling layers

Real-NVP (Dinh et al., 2017)
Inverse Autoregressive Flow (Kingma et al., 2016)

Masked Autoregressive Flow (Papamakarios et al., 2017)
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NICE - Additive coupling layers

Partition the variables z into two disjoint subsets, say z;.4 and zg41., for
any 1 <d<n
@ Forward mapping z — x:
o X1.4 = 21,4 (identity transformation)

® Xdi1:n = Zdt1:n + Me(z1.4) (mMe(+) is a neural network with parameters
6, d input units, and n — d output units)
@ Inverse mapping x — z:
e z1.4 = X1.4 (identity transformation)
@ Zgi1:n = Xd+1:n — mO(Xl:d)
@ Jacobian of forward mapping:

0% _ Iy 0
oz Lg;;g" Iy
det(J) =1

@ Volume preserving transformation since determinant is 1.
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NICE - Rescaling layers

e Additive coupling layers are composed together (with arbitrary
partitions of variables in each layer)
o Final layer of NICE applies a rescaling transformation
@ Forward mapping z — x:
Xj = §5;Z;
where s; > 0 is the scaling factor for the /-th dimension.
@ Inverse mapping x — z:
5
Si

@ Jacobian of forward mapping:

J = diag(s)

det(J) = f[ Si
i=1
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Samples generated via NICE
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(a) Model trained on MNIST (b) Model trained on TFD
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Samples generated via NICE

(c) Model trained on SVHN (d) Model trained on CIFAR-10
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