
Normalizing Flow Models

Stefano Ermon, Aditya Grover

Stanford University

Lecture 7

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 1 / 21

Recap of likelihood-based learning so far:

Model families:

Autoregressive Models: pθ(x) =
∏n

i=1 pθ(xi |x<i)
Variational Autoencoders: pθ(x) =

∫
pθ(x, z)dz

Autoregressive models provide tractable likelihoods but no direct
mechanism for learning features

Variational autoencoders can learn feature representations (via latent
variables z) but have intractable marginal likelihoods

Key question: Can we design a latent variable model with tractable
likelihoods? Yes!

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 2 / 21

Simple Prior to Complex Data Distributions

Desirable properties of any model distribution:

Analytic density
Easy-to-sample

Many simple distributions satisfy the above properties e.g., Gaussian,
uniform distributions

Unfortunately, data distributions could be much more complex
(multi-modal)

Key idea: Map simple distributions (easy to sample and evaluate
densities) to complex distributions (learned via data) using change of
variables.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 3 / 21

Change of Variables formula

Let Z be a uniform random variable U [0, 2] with density pZ . What is
pZ (1)? 1

2

Let X = 4Z , and let pX be its density. What is pX (4)?

pX (4) = p(X = 4) = p(4Z = 4) = p(Z = 1) = pZ (1) = 1/2 No

Clearly, X is uniform in [0, 8], so pX (4) = 1/8

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 4 / 21

Change of Variables formula

Change of variables (1D case): If X = f (Z) and f (·) is monotone
with inverse Z = f −1(X) = h(X), then:

pX (x) = pZ (h(x))|h′(x)|

Previous example: If X = 4Z and Z ∼ U [0, 2], what is pX (4)?

Note that h(X) = X/4

pX (4) = pZ (1)h′(4) = 1/2× 1/4 = 1/8

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 5 / 21

Geometry: Determinants and volumes

Let Z be a uniform random vector in [0, 1]n

Let X = AZ for a square invertible matrix A, with inverse W = A−1.
How is X distributed?

Geometrically, the matrix A maps the unit hypercube [0, 1]n to a
parallelotope

Hypercube and parallelotope are generalizations of square/cube and
parallelogram/parallelopiped to higher dimensions

Figure: The matrix A =

(
a c
b d

)
maps a unit square to a parallelogram

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 6 / 21

Geometry: Determinants and volumes

The volume of the parallelotope is equal to the determinant of the
transformation A

det(A) = det

(
a c
b d

)
= ad − bc

X is uniformly distributed over the parallelotope. Hence, we have

pX (x) = pZ (W x) |det(W)|
= pZ (W x) / |det(A)|

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 7 / 21

Generalized change of variables

For linear transformations specified via A, change in volume is given
by the determinant of A

For non-linear transformations f(·), the linearized change in volume is
given by the determinant of the Jacobian of f(·).

Change of variables (General case): The mapping between Z and
X , given by f : Rn 7→ Rn, is invertible such that X = f(Z) and
Z = f−1(X).

pX (x) = pZ
(
f−1(x)

) ∣∣∣∣det(∂f−1(x)

∂x

)∣∣∣∣
Note 1: x, z need to be continuous and have the same dimension. For
example, if x ∈ Rn then z ∈ Rn

Note 2: For any invertible matrix A, det(A−1) = det(A)−1

pX (x) = pZ (z)

∣∣∣∣det(∂f(z)

∂z

)∣∣∣∣−1
Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 8 / 21

Two Dimensional Example

Let Z1 and Z2 be continuous random variables with joint density
pZ1,Z2 .

Let u = (u1, u2) be a transformation

Let v = (v1, v2) be the inverse transformation

Let X1 = u1(Z1,Z2) and X2 = u2(Z1,Z2) Then, Z1 = v1(X1,X2) and
Z2 = v2(X1,X2)

pX1,X2(x1, x2)

= pZ1,Z2(v1(x1, x2), v2(x1, x2))

∣∣∣∣∣det
(

∂v1(x1,x2)
∂x1

∂v1(x1,x2)
∂x2

∂v2(x1,x2)
∂x1

∂v2(x1,x2)
∂x2

)∣∣∣∣∣ (inverse)

= pZ1,Z2(z1, z2)

∣∣∣∣∣det
(

∂u1(z1,z2)
∂z1

∂u1(z1,z2)
∂z2

∂u2(z1,z2)
∂z1

∂u2(z1,z2)
∂z2

)∣∣∣∣∣
−1

(forward)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 9 / 21

Normalizing flow models

Consider a directed, latent-variable model over observed variables X
and latent variables Z

In a normalizing flow model, the mapping between Z and X , given
by fθ : Rn 7→ Rn, is deterministic and invertible such that X = fθ(Z)
and Z = f−1θ (X)

Using change of variables, the marginal likelihood p(x) is given by

pX (x; θ) = pZ
(
f−1θ (x)

) ∣∣∣∣∣det
(
∂f−1θ (x)

∂x

)∣∣∣∣∣
Note: x, z need to be continuous and have the same dimension.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 10 / 21

A Flow of Transformations

Normalizing: Change of variables gives a normalized density after
applying an invertible transformation
Flow: Invertible transformations can be composed with each other

x , zM = fMθ ◦ · · · ◦ f1θ (z0) = fMθ (fM−1θ (· · · (f1θ (z0)))) , fθ(z0)

Start with a simple distribution for z0 (e.g., Gaussian)

Apply a sequence of M invertible transformations

pX (x; θ) = pZ
(
f−1θ (x)

) M∏
m=1

∣∣∣∣det(∂(fmθ)−1

∂zm

)∣∣∣∣
(determininant of product equals product of determinants)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 11 / 21

Planar flows

Planar flow (Rezende & Mohamed, 2016). Invertible transformation

x = fθ(z) = z + uh(wTz + b)

parameterized by θ = (w,u, b) where h(·) is a non-linearity

Absolute value of the determinant of the Jacobian is given by∣∣∣∣det∂fθ(z)

∂z

∣∣∣∣ =
∣∣∣det(I + h′(wTz + b)uwT)

∣∣∣
=
∣∣∣1 + h′(wTz + b)uTw

∣∣∣
(matrix determinant lemma)

Need to restrict parameters and non-linearity for the mapping to be
invertible. For example, h = tanh() and h′(wTz + b)uTw ≥ −1

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 12 / 21

Planar flows

Base distribution: Gaussian

Base distribution: Uniform

10 planar transformations can transform simple distributions into a
more complex one

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 13 / 21

Learning and Inference

Learning via maximum likelihood over the dataset D

max
θ

log pX (D; θ) =
∑
x∈D

log pZ
(
f−1θ (x)

)
+ log

∣∣∣∣∣det
(
∂f−1θ (x)

∂x

)∣∣∣∣∣
Exact likelihood evaluation via inverse tranformation x 7→ z and
change of variables formula

Sampling via forward transformation z 7→ x

z ∼ pZ (z) x = fθ(z)

Latent representations inferred via inverse transformation (no
inference network required!)

z = f−1θ (x)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 14 / 21

Desiderata for flow models

Simple prior pZ (z) that allows for efficient sampling and tractable
likelihood evaluation. E.g., isotropic Gaussian

Invertible transformations with tractable evaluation:

Likelihood evaluation requires efficient evaluation of x 7→ z mapping
Sampling requires efficient evaluation of z 7→ x mapping

Computing likelihoods also requires the evaluation of determinants of
n × n Jacobian matrices, where n is the data dimensionality

Computing the determinant for an n × n matrix is O(n3): prohibitively
expensive within a learning loop!
Key idea: Choose tranformations so that the resulting Jacobian matrix
has special structure. For example, the determinant of a triangular
matrix is the product of the diagonal entries, i.e., an O(n) operation

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 15 / 21

Triangular Jacobian

x = (x1, · · · , xn) = f(z) = (f1(z), · · · , fn(z))

J =
∂f

∂z
=

 ∂f1
∂z1

· · · ∂f1
∂zn

· · · · · · · · ·
∂fn
∂z1

· · · ∂fn
∂zn


Suppose xi = fi (z) only depends on z≤i . Then

J =
∂f

∂z
=

 ∂f1
∂z1

· · · 0

· · · · · · · · ·
∂fn
∂z1

· · · ∂fn
∂zn


has lower triangular structure. Determinant can be computed in linear
time. Similarly, the Jacobian is upper triangular if xi only depends on z≥i

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 16 / 21

Designing invertible transformations

NICE or Nonlinear Independent Components Estimation (Dinh et al.,
2014) composes two kinds of invertible transformations: additive
coupling layers and rescaling layers

Real-NVP (Dinh et al., 2017)

Inverse Autoregressive Flow (Kingma et al., 2016)

Masked Autoregressive Flow (Papamakarios et al., 2017)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 17 / 21

NICE - Additive coupling layers

Partition the variables z into two disjoint subsets, say z1:d and zd+1:n for
any 1 ≤ d < n

Forward mapping z 7→ x:
x1:d = z1:d (identity transformation)
xd+1:n = zd+1:n + mθ(z1:d) (mθ(·) is a neural network with parameters
θ, d input units, and n − d output units)

Inverse mapping x 7→ z:
z1:d = x1:d (identity transformation)
zd+1:n = xd+1:n −mθ(x1:d)

Jacobian of forward mapping:

J =
∂x

∂z
=

(
Id 0

∂xd+1:n

∂z1:d
In−d

)

det(J) = 1

Volume preserving transformation since determinant is 1.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 18 / 21

NICE - Rescaling layers

Additive coupling layers are composed together (with arbitrary
partitions of variables in each layer)

Final layer of NICE applies a rescaling transformation

Forward mapping z 7→ x:
xi = sizi

where si > 0 is the scaling factor for the i-th dimension.

Inverse mapping x 7→ z:

zi =
xi
si

Jacobian of forward mapping:

J = diag(s)

det(J) =
n∏

i=1

si

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 19 / 21

Samples generated via NICE

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 20 / 21

Samples generated via NICE

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 7 21 / 21

