
Latent Variable Models

Stefano Ermon, Aditya Grover

Stanford University

Lecture 5

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31

Recap of last lecture

1 Autoregressive models:

Chain rule based factorization is fully general
Compact representation via conditional independence and/or neural
parameterizations

2 Autoregressive models Pros:

Easy to evaluate likelihoods
Easy to train

3 Autoregressive models Cons:

Requires an ordering
Generation is sequential
Cannot learn features in an unsupervised way

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 2 / 31

Plan for today

1 Latent Variable Models

Variational EM

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 3 / 31

Latent Variable Models: Motivation

1 Lots of variability in images x due to gender, eye color, hair color,
pose, etc. However, unless images are annotated, these factors of
variation are not explicitly available (latent).

2 Idea: explicitly model these factors using latent variables z

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 4 / 31

Latent Variable Models: Motivation

1 Only shaded variables x are observed in the data (pixel values)
2 Latent variables z correspond to high level features

If z chosen properly, p(x|z) could be much simpler than p(x)
If we had trained this model, then we could identify features via
p(z | x), e.g., p(EyeColor = Blue|x)

3 Challenge: Very difficult to specify these conditionals by hand

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 5 / 31

Deep Latent Variable Models

1 z ∼ N (0, I)

2 p(x | z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

3 Hope that after training, z will correspond to meaningful latent
factors of variation (features). Unsupervised representation learning.

4 As before, features can be computed via p(z | x)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 6 / 31

Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians. Bayes net: z → x.

1 z ∼ Categorical(1, · · · ,K)

2 p(x | z = k) = N (µk ,Σk)

Generative process

1 Pick a mixture component k by sampling z

2 Generate a data point by sampling from that Gaussian

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 7 / 31

Mixture of Gaussians: a Shallow Latent Variable Model

Mixture of Gaussians:

1 z ∼ Categorical(1, · · · ,K)

2 p(x | z = k) = N (µk ,Σk)

3 Clustering: The posterior p(z | x) identifies the mixture component

4 Unsupervised learning: We are hoping to learn from unlabeled data
(ill-posed problem)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 8 / 31

Unsupervised learning

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 9 / 31

Unsupervised learning

Shown is the posterior probability that a data point was generated by the
i-th mixture component, P(z = i |x)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 10 / 31

Unsupervised learning

Unsupervised clustering of handwritten digits.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 11 / 31

Unsupervised learning

Combine simple models into a more complex and expressive one

p(x) =
∑
z

p(x, z) =
∑
z

p(z)p(x | z) =
K∑

k=1

p(z = k)N (x;µk ,Σk)︸ ︷︷ ︸
component

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 12 / 31

Variational Autoencoder

A mixture of an infinite number of Gaussians:

1 z ∼ N (0, I)
2 p(x | z) = N (µθ(z),Σθ(z)) where µθ,Σθ are neural networks

µθ(z) = σ(Az+ c) = (σ(a1z+ c1), σ(a2z+ c2)) = (µ1(z), µ2(z))

Σθ(z) = diag(exp(σ(Bz+ d))) =
(

exp(σ(b1z+d1)) 0
0 exp(σ(b2z+d2))

)
θ = (A,B, c , d)

3 Even though p(x | z) is simple, the marginal p(x) is very
complex/flexible

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 13 / 31

Recap

Latent Variable Models

Allow us to define complex models p(x) in terms of simple building
blocks p(x | z)
Natural for unsupervised learning tasks (clustering, unsupervised
representation learning, etc.)
No free lunch: much more difficult to learn compared to fully observed,
autoregressive models

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 14 / 31

Marginal Likelihood

Suppose some pixel values are missing at train time (e.g., top half)

Let X denote observed random variables, and Z the unobserved ones (also
called hidden or latent)

Suppose we have a model for the joint distribution (e.g., PixelCNN)

p(X,Z; θ)

What is the probability p(X = x̄; θ) of observing a training data point x̄?∑
z

p(X = x̄,Z = z; θ) =
∑
z

p(x̄, z; θ)

Need to consider all possible ways to complete the image (fill green part)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 15 / 31

Partially observed data

Suppose that our joint distribution is

p(X,Z; θ)

We have a dataset D, where for each datapoint the X variables are observed
(e.g., pixel values) and the variables Z are never observed (e.g., cluster or
class id.). D = {x(1), · · · , x(M)}.
Maximum likelihood learning:

ℓ(θ;D) = log
∏
x∈D

p(x; θ) =
∑
x∈D

log p(x; θ)

=
∑
x∈D

log
∑
z

p(x, z; θ)

Evaluating log
∑

z p(x, z; θ) can be intractable. Suppose we have 30 binary
latent features, z ∈ {0, 1}30. Evaluating

∑
z p(x, z; θ) involves a sum with

230 terms. For continuous variables, log
∫
z p(x, z; θ)dz is often intractable.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 16 / 31

Why is parameter learning in presence of Partially
Observed Data challenging?

Likelihood function for Fully Observed Data:

pθ(x)︸ ︷︷ ︸
easy to compute

=
∏
i

log p(xi | xpa(i))

Compare with Likelihood function for Partially Observed Data:∑
z

pθ(x, z)︸ ︷︷ ︸
hard to compute

Likelihood function for Partially Observed Data:

is not decomposable (by variable and parent assignment) and not
unimodal as a function of θ. Could still try gradient descent.

Hard to compute and take gradients ∇θ (too many completions)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 17 / 31

First attempt: Naive Monte Carlo

Likelihood function for Partially Observed Data is hard to compute:∑
All possible values of z

pθ(x, z) = |Z|
∑
z∈Z

1

|Z|
pθ(x, z) = |Z|Ez∼Uniform(Z) [pθ(x, z)]

We can think of it as an (intractable) expectation. Monte Carlo to the rescue:

1 Sample z(1), · · · , z(k) uniformly at random

2 Approximate expectation with sample average

∑
z

pθ(x, z) ≈ |Z| 1
k

k∑
j=1

pθ(x, z
(j))

Works in theory but not in practice. For most z, pθ(x, z) is very low (most
completions don’t make sense). Some are very large but will never ”hit” likely
completions by uniform random sampling. Need a clever way to select z(j) to
reduce variance of the estimator.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 18 / 31

The Expectation Maximization (EM) Algorithm

Start with an initial guess (random) of the parameters θ(0)

Repeat until convergence
1 Complete (“hallucinate”) the incomplete data (the z part) using

current parameters (E-step)
2 Train: Update the parameters based on the completed data (M-step)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 19 / 31

The Expectation Maximization Algorithm: Example

C

D

BA

θa = .3
θb = .9
θc|ā,b̄ = .83
θc|ā,b = .09
θc|a,b̄ = .6
θc|a,b = .2
θd |c̄ = .1
θd |c = .8

Data instance: (a, ?, ?, d̄)
How to complete this example?
For each possible completion

STEP 1: Compute how likely
the completion is (given the
observed part).

Compute P(z|x). In this
example
P(B,C | A = a,D = d̄).

For example,

P(b, c | a, d̄) = P(a, b, c, d̄)

P(a, d̄)
=

0.3 · 0.9 · 0.2 · (1− 0.8)

0.3 · 0.9 · 0.2 · (1− 0.8) + · · ·+ 0.3 · 0.1 · 0.4 · 0.9
= .0492

P(b̄, c | a, d̄) = P(a, b̄, c, d̄)

P(a, d̄)
=

0.3 · 0.1 · 0.6 · (1− 0.8)

0.3 · 0.9 · 0.2 · (1− 0.8) + · · ·+ 0.3 · 0.1 · 0.4 · 0.9
= .0164

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 20 / 31

The Expectation Maximization Algorithm

Data set is now bigger and weighted

If binary variables, (a, ?, ?, d̄) corresponds to four weighted examples

(a, b, c , d̄), weight = .0492 = P(b, c | a, d̄)
(a, b, c̄ , d̄), weight = .8852 = P(b, c̄ | a, d̄)
(a, b̄, c , d̄), weight = .0164 = P(b̄, c , | a, d̄)
(a, b̄, c̄ , d̄), weight = .0492 = P(b̄, c̄ | a, d̄)

weight = probability according to current parameter estimates

After completion, the dataset is fully observed, so we can train as usual via
gradient descent or closed-form (M-Step)

θt+1 = argmax
θ

M∑
m=1

Ep(zm|xm;θt)[log p(xm, zm; θ)]

Two problems:
1 p(zm | xm; θt) = p(xm, zm; θt)/p(xm; θt) requires

p(xm; θt) =
∑

z p(xm, z; θt) (what you’d need for gradient descent)
2 Still requires looking at all possible completions

Solution: replace p(z | x; θ) with a tractable q(z) and do Monte Carlo
Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 21 / 31

The EM Algorithm

Suppose q(z) is any probability distribution over the hidden variables

DKL(q(z)∥p(z|x; θ)) =
∑
z

q(z) log
q(z)

p(z|x; θ)

= −
∑
z

q(z) log p(z|x; θ) +
∑
z

q(z) log q(z)︸ ︷︷ ︸
−H(q)

= −
∑
z

q(z) log p(z|x; θ)− H(q)

= −
∑
z

q(z) log
p(z, x; θ)

p(x; θ)
− H(q)

= −
∑
z

q(z) log p(z, x; θ) +
∑
z

q(z) log p(x; θ)− H(q)

= −
∑
z

q(z) log p(z, x; θ) + log p(x; θ)− H(q) ≥ 0

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 22 / 31

The EM Algorithm

Suppose q(z) is any probability distribution over the hidden variables

DKL(q(z)∥p(z|x; θ)) = −
∑
z

q(z) log p(z, x; θ) + log p(x; θ)− H(q) ≥ 0

Evidence lower bound (ELBO) holds for any q

log p(x; θ) ≥
∑
z

q(z) log p(z, x; θ) + H(q)

Equality holds if q = p(z|x; θ)

log p(x; θ)=
∑
z

q(z) log p(z, x; θ) + H(q)

This is what we compute in the E-step of the EM algorithm

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 23 / 31

The EM Algorithm

q(z) is an arbitrary probability distribution over z

DKL(q∥p(z|x; θ)) = −
∑
z

q(z) log p(z, x; θ) + log p(x; θ)− H(q)

Re-arranging can rewrite as

H(q) +
∑
z

q(z) log p(z, x; θ) = log p(x; θ)− DKL(q∥p(z|x; θ)) ≜ F [q, θ]

Can interpret EM as coordinate ascent on F [q, θ]
1 Initialize θ(0)

2 q(0) = argmaxq F [q, θ
(0)] = p(z|x; θ(0))

3 θ(1) = argmaxθ F [q
(0), θ] = argmaxθ

∑
z q

(0)(z) log p(z, x; θ)
4 q(1) = argmaxq F [q, θ

(1)]
5 ...

Marginal likelihood never decreases

log p(x; θ(0)) = F [q(0), θ(0)] ≤ F [q(0), θ(1)] = log p(x; θ(1))− DKL(q
(0)∥p(z|x; θ(1)))

≤ log p(x; θ(1)) = F [q(1), θ(1)] = · · ·

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 24 / 31

Coordinate ascent

Maximize along one direction at a time:
Initialize x0, y0
y1 = argmaxy f (x0, y)
x1 = argmaxx f (x , y1)
y2 = argmaxy f (x1, y)
...

Objective keeps improving.
f (x0, y0) ≤ f (x0, y1) ≤ f (x1, y1) ≤ f (x1, y2) ≤ · · ·

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 25 / 31

Derivation of EM algorithm

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 26 / 31

The Evidence Lower bound

What if the posterior p(z|x; θ) is intractable to compute in the E-step?

Suppose q(z;ϕ) is a (tractable) probability distribution over the hidden
variables parameterized by ϕ (variational parameters)

E.g., a Gaussian with mean and covariance specified by ϕ, a fully
factored probability distribution, a FVSBN, etc.

q(z;ϕ) =
∏

unobserved variables zi

(ϕi)
zi (1− ϕi)

(1−zi)

Note: conditioned on the bottom part (x), choosing pixels independently in
z is not a terrible approximation

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 27 / 31

The Evidence Lower bound

log p(x; θ) ≥
∑
z

q(z;ϕ) log p(z, x; θ) + H(q(z;ϕ)) = L(x; θ, ϕ)︸ ︷︷ ︸
ELBO

= L(x; θ, ϕ) + DKL(q(z;ϕ)∥p(z|x; θ))

The better q(z;ϕ) can approximate the posterior p(z|x; θ), the smaller
DKL(q(z;ϕ)∥p(z|x; θ)) we can achieve, the closer ELBO will be to
log p(x; θ)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 28 / 31

The Variational EM Algorithm

q(z;ϕ) is an arbitrary probability distribution over z

DKL(q(z;ϕ)∥p(z|x; θ)) = −
∑
z

q(z;ϕ) log p(z, x; θ) + log p(x; θ)− H(q(z;ϕ))

Re-arranging can rewrite as

H(q(z;ϕ)) +
∑
z

q(z;ϕ) log p(z, x; θ) = log p(x; θ)− DKL(q(z;ϕ)∥p(z|x; θ)) = F [ϕ, θ]

Variational EM as coordinate ascent on F [ϕ, θ]

1 Initialize θ(0)

2 ϕ(1) = argmaxϕ F [ϕ, θ
(0)] ̸= p(z|x; θ(0)) in general

3 θ(1) = argmaxθ F [ϕ
(1), θ] (can do Monte Carlo!)

4 ϕ(2) = argmaxϕ F [ϕ, θ
(1)] ̸= p(z|x; θ(1)) in general

5 ...

Unlike EM, variational EM not guaranteed to reach a local maximum.
Marginal likelihood might decrease!

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 29 / 31

Potential issues with Variational EM algorithm

(Figure adapted from tutorial by Sean Borman)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 30 / 31

Summary

Latent Variable Models Pros:

Easy to build flexible models
Suitable for unsupervised learning

Latent Variable Models Cons:

Hard to evaluate likelihoods
Hard to train via maximum-likelihood
Fundamentally, the challenge is that posterior inference p(z | x) is hard.
Typically requires variational approximations

Alternative: give up on KL-divergence and likelihood (GANs)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 31 / 31

