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Learning a generative model

@ We are given a training set of examples, e.g., images of dogs

d(P gatar Pyg)

Pgata

0eM

Model family

@ We want to learn a probability distribution p(x) over images x such that
o Generation: If we sample x,en ~ p(x), Xnew should look like a dog
(sampling)
o Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)
o Unsupervised representation learning: We should be able to learn
what these images have in common, e.g., ears, tail, etc. (features)

@ First question: how to represent p(x)

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 2 2/32



Basic discrete distributions

e Bernoulli distribution: (biased) coin flip

D = {Heads, Tails}

Specify P(X = Heads) = p. Then P(X = Tails) =1 —p.
Write: X ~ Ber(p)

Sampling: flip a (biased) coin

o Categorical distribution: (biased) m-sided dice
D={1,---,m

Specify P(Y = i) = p;, such that 3" p; =1
Write: Y ~ Cat(p1,--- , pm)

Sampling: roll a (biased) die
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Example of joint distribution

Modeling a single pixel's color. Three discrete random variables:
e Red Channel R. Val(R) = {0,--- ,255}
o Green Channel G. Val(G) = {0,---,255}
@ Blue Channel G. Val(B) = {0,--- ,255}

Sampling from the joint distribution (r, g, b) ~ p(R, G, B) randomly
generates a color for the pixel. How many parameters do we need to
specify the joint distribution p(R =r, G = g, B = b)?

256 * 256 x 256 — 1
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Example of joint distribution

@ Suppose Xi, ..., X, are binary (Bernoulli) random variables, i.e.,
Val(X;) = {0, 1} = {Black, White}.
@ How many possible states?

2X2X o x2 =2"
~——

n times
e Sampling from p(xi, ..., x,) generates an image
@ How many parameters to specify the joint distribution p(xi, ..., x,)
over n binary pixels?
2" —1
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Structure through independence

o If X1,...,X, are independent, then

p(xt, .. xa) = p(x1)p(x2) - - p(xn)

How many possible states? 2”

How many parameters to specify the joint distribution p(xi, ..., x)?
e How many to specify the marginal distribution p(x;)? 1

2" entries can be described by just n numbers (if [Val(X;)| = 2)!

Independence assumption is too strong. Model not likely to be useful
o For example, each pixel chosen independently when we sample from it.
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Key notion: conditional independence

@ Two events A, B are conditionally independent given event C if

p(AN BIC) = p(AIC)p(BIC)

@ Random variables X, Y are conditionally independent given Z if for
all values x €Val(X), y €Val(Y), z eVal(Z)

p(X=xNY =y|Z=2z)=p(X =x|Z=2)p(Y =y|Z = 2)

We will also write p(X, Y|Z) = p(X|Z)p(Y|Z). Note the more
compact notation.

Equivalent definition: p(X|Y, Z) = p(X|2).
We write X L Y | Z
Similarly for sets of random variables, X L Y | Z
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Two important rules

© Chain rule Let Sp,...S5, be events, p(S;) > 0.
p(S1NSan---NS,) =p(S1)p(S2 | S1) - p(Sn | S1N...NSp-1)
@ Bayes’ rule Let 51,5, be events, p(S1) > 0 and p(S2) > 0.

p(51NS2) _ p(S2 | S1)p(S1)
p(S2) p(S2)

p(S1 | S2) =
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Structure through conditional independence

@ Using Chain Rule

p(x1, .-, xn) = p(x1)p(x2 | x1)p(x3 | x1,x2) - p(xn | X1, -+, Xn—1)

o How many parameters? 142 +4-.- 42771 =27 _1
e p(x1) requires 1 parameter
o p(x2 | x1 = 0) requires 1 parameter, p(x2 | x; = 1) requires 1 parameter
Total 2 parameters.
° .-

@ 2" — 1 is still exponential, chain rule does not buy us anything.
@ Now suppose Xjy1 L Xi,...,Xj—1 | Xi, then

p(x1, ..., xa) = plxi)p(x2 | x1)p(x3 | 21, x2) - - p(Xn | X1,—"Xn—1)
= p(x)p(xe [ x1)p(xz | x2) -+ p(xn | Xn-1)

@ How many parameters? 2n — 1. Exponential reduction!
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Structure through conditional independence

@ Suppose we have 4 random variables Xy, -+, X4
@ Using Chain Rule we can always write
p(x1, .-, xa) = p(x1)p(x2 | x1)p(xs | x1,x2)p(xa | x1, X2, x3)
o If Xo L Xo | {X1, X3}, we can simplify as
p(x1, .-, xn) = p(x1)p(x2 | x1)p(x3 | x1,x2)p(xa | x1, 24, x3)
@ Using Chain Rule with a different ordering we can always also write

p(xi,. ... xa) = p(xa)p(x3 | xa)p(x2 | x3,xa)p(x1 | X2, X3, Xa)

If X1 L {X2, X3} | X4, we can simplify as

p(x1, ... xa) = p(xa)p(x3 | xa)p(x2 | X3, xa)p(x1 | X2r%3, Xa)

@ Bayesian Networks: assume an ordering and a set of conditional
independencies to get compact representation
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Bayes Network: General |dea

@ Use conditional parameterization (instead of joint parameterization)

@ For each random variable Xj, specify p(xi|xa,) for set Xa, of random
variables

@ Then get joint parametrization as

p(X1,y ...y Xn) = Hp(x,-]xAi)

@ Need to guarantee it is a legal probability distribution. It has to
correspond to a chain rule factorization, with factors simplified due to
assumed conditional independencies
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Bayesian networks

A Bayesian network is specified by a directed acyclic graph
G = (V, E) with:
@ One node i € V for each random variable X;
@ One conditional probability distribution (CPD) per node, p(x; | Xpa(i)),
specifying the variable's probability conditioned on its parents’ values

Graph G = (V/, E) is called the structure of the Bayesian Network

@ Defines a joint distribution:
p(xi,...xp) = H p(xi | xPa(i))
iev
e Claim: p(xi,...xp) is a valid probability distribution

e Economical representation: exponential in |Pa(i)|, not |V/|
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- D
Directed DAG
cycle

DAG stands for Directed Acyclic Graph
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Example

@ Consider the following Bayesian network:

a [ a] [o]
0.6

gl
i%d° |03
i%d" | 0.05
il,d | o9
il,d" | os

g'lo1 09
g2lo4 o6
2’| 099 001

@ What is its joint distribution?

px..xa) = ] P | xpagi))
ieVv
p(d,i,g,s,1) = p(d)p(i)p(g|i,d)p(s|i)p(l|g)
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Bayesian network structure implies conditional

independencies!

Intelligence

@ The joint distribution corresponding to the above BN factors as

p(d,i.g,s,1) = p(d)p(i)p(g | i,d)p(s | Np(/ | &)

@ However, by the chain rule, any distribution can be written as

p(d,i,g,s,1) = p(d)p(i | d)p(g | i,d)p(s|i,d,g)p(l|g,d,i,s)

@ Thus, we are assuming the following additional independencies:
D11 S1{D,G}|I, L1{l,D,S}|G.
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Bayesian network structure implies conditional

independencies!

@ A Bayesian network structure G implies the following conditional
independence assumptions:

o For each variable X,,, X, is independent from its non-descendants given
its parents

X, L NonDescendantsy,

Parentsy,

Non-descendants

XN
X7rv
Claim: X, is
conditionally
Descendants independent of its
Xp non-descendants X n

given its parents X

o Called local independencies
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Conditional independence implies factorization

Non-descendants

Xy
X-.

Xo Note that it is
possible to factor the
joint distribution as:

Descendants
Xp P(X1.....Xp) =

P(XN)P(Xr, | XN)P(X,|Xr,)
% P(Xp|Xy. Xr,. Xn)

Xy L NonDescendantsy,, | Parentsx, = Factorization. Proof sketch:
Let P such that it satisfies local independencies over directed acyclic graph
G. Use chain rule based on topological variable ordering:

p(x1, ..., xn) = p(xa)p(x2 | x1)p(x3 | x1,%2) -+ p(xXn | X1, -+ Xn-1)

Simplify the formula using conditional independency assumptions.
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e Bayesian networks given by (G, P) where P is specified as a set of
local conditional probability distributions associated with G's nodes

o Efficient representation using a graph-based data structure

@ Computing the probability of any assignment is obtained by
multiplying CPDs

@ Can identify some conditional independence properties by looking at
graph properties

@ Next: generative vs. discriminative; functional parameterizations
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Naive Bayes for single label prediction

o Classify e-mails as spam (Y = 1) or not spam (Y = 0)
o Let 1: nindex the words in our vocabulary (e.g., English)
e X; =1 if word /i appears in an e-mail, and 0 otherwise
o E-mails are drawn according to some distribution p(Y, Xi,...,X,)

@ Words are conditionally independent given Y:
Label

Features

@ Then

n

ply:xt,- %) = p(y) [[ p(xi | ¥)

i=1
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Example: naive Bayes for classification

o Classify e-mails as spam (Y = 1) or not spam (Y = 0)
o Let 1: nindex the words in our vocabulary (e.g., English)
e X; =1 if word i appears in an e-mail, and O otherwise
e E-mails are drawn according to some distribution p(Y, Xi,...,X,)

@ Suppose that the words are conditionally independent given Y. Then,

p(y;x1, - xn) = p(y) Hp(x,- ly)

Estimate parameters from training data. Predict with Bayes rule:

p(Y = DIliLpl6i | Y =1)

p(Y =1|x1,...x5) =
V=t ) = s oY = ) [ P | Y =)

@ Are the independence assumptions made here reasonable?

@ Philosophy: Nearly all probabilistic models are “wrong”, but many are
nonetheless useful
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Discriminative versus generative models

@ Using chain rule p(Y,X) = p(X | Y)p(Y) = p(Y | X)p(X).
Corresponding Bayesian networks:

Generative Discriminative

@ ©

@ However, suppose all we need for prediction is p(Y | X)
@ In the left model, we need to specify/learn both p(Y) and p(X | Y),

then compute p(Y | X) via Bayes rule
@ In the right model, it suffices to estimate just the conditional
distribution p(Y | X)
o We never need to model/learn/use p(X)!
o Called a discriminative model because it is only useful for
discriminating Y's label when given X
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Discriminative versus generative models

@ Since X is a random vector, chain rules will give
o p(Y,X)=p(Y)p(X1 | Y)p(Xo | Y. X1)- - p(Xp | YV, X1, , Xn1)
o p(Y,X) = p(X1)p(Xz | X1)p(Xz | Xi, Xo) -+ p(Y | X1, -+, Xn1, Xn)

Generative Discriminative

We must make the following choices:

@ In the generative model, p(Y) is simple, but how do we parameterize
P(Xi | Xpa(i): Y)?

@ |In the discriminative model, how do we parameterize p(Y | X)? Here
we assume we don't care about modeling p(X) because X is always
given to us in a classification problem

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 2 22 /32



@ For the generative model, assume that X; L X_; | Y (naive Bayes)

o
FS:0-0 FTOO ®
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Logistic regression

@ For the discriminative model, assume that
p(Y =1|xa) = f(x,)
@ Not represented as a table anymore. It is a parameterized function of
x (regression)
e Has to be between 0 and 1
o Depend in some simple but reasonable way on xi,--- , x,

o Completely specified by a vector & of n+ 1 parameters (compact
representation)

Linear dependence: let z(ax,x) = ag + Y i aix;. Then,
p(Y =1|x; a) =o(z(a,x)), where o(z) = 1/(1 + e ?) is called the
logistic function:

1+e*
Same

graphical model

-6 -4 -2 0 2 4 6

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models i Lecture 2 24 /32



Logistic regression

Linear dependence: let z(ax,x) = ap + Y iy @ix;. Then,

p(Y =1]x; &) =o0(z(a,x)), where 0(z) =1/(1+ e ?) is called the
logistic function

Contours of equal probability defined by 0

Probability map defined by 6 Probability map defined by 0

4l B -n N
b os i
Class 0 p " o P
Class 1 w o 5
bable contours|| [l

@ Decision boundary p(Y =1 | x; ) > 0.5 is linear in x
@ Equal probability contours are straight lines

© Probability rate of change has very specific form (third plot)
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Discriminative models are powerful

Generative (naive Bayes) Discriminative (logistic regression)

@ Logistic model does not assume X; L X_; | Y, unlike naive Bayes

@ This can make a big difference in many applications

@ For example, in spam classification, let X; = 1[“bank” in e-mail] and
X, = 1[“account” in e-mail]

@ Regardless of whether spam, these always appear together, i.e. X; = X5

@ Learning in naive Bayes results in p(Xi | Y) = p(Xz2 | Y). Thus, naive Bayes
double counts the evidence

@ Learning with logistic regression sets a; = 0 or ap = 0, in effect ignoring it
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Generative models are still very useful

Using chain rule p(Y,X) = p(X | Y)p(Y) = p(Y | X)p(X). Corresponding
Bayesian networks:

Generative Discriminative

@ Using a conditional model is only possible when X is always observed

o When some X; variables are unobserved, the generative model allows us
to compute p(Y | Xevidence) by marginalizing over the unseen variables
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Neural Models

@ In discriminative models, we assume that
p(Y =1|xa)="f(x,a)

@ Linear dependence:
o let z(a,x) = ap + D1y ix;.
o p(Y=1]|xa)=o0(z(a,x)), where o(z) =1/(1 + e~ %) is the
logistic function
o Dependence might be too simple
© Non-linear dependence: let h(A, b, x) = f(Ax + b) be a non-linear
transformation of the inputs (features).
pNeural(Y =1 | X &, A7 b) = J(Ck() + Z?:l Oé,'h,')
e More flexible
o More parameters: A, b, «

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 2 28 / 32



Neural Models

@ In discriminative models, we assume that
p(Y =1|xa)="1f(x,a)

@ Linear dependence: let z(a,x) = ag + Y q Qjx;.
p(Y =1]|x a)=f(z(a,x)), where f(z) =1/(1+ e %) is the
logistic function
e Dependence might be too simple
© Non-linear dependence: let h(A, b, x) = f(Ax + b) be a non-linear
transformation of the inputs (features).
pNeural(Y =1 | X; o, A, b) = f(aO + Z,b:]_ aihi)
o More flexible
o More parameters: A, b,
o Can repeat multiple times to get a neural network
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Bayesian networks vs neural models

@ Using Chain Rule
p(x1, x2, X3, xa) = p(x1)p(x2 | x1)p(x3 | x1,%2)p(xa | x1, X2, x3)

Fully General
o Bayes Net

p(x1,x2,x3,xa) = p(x1)p(x2 | x1)p(x3 | 1, x2)p(xa | X1, X2,%3)

Assumes conditional independencies

@ Neural Models
p(x1,x2,x3,xa) = p(x1)p(x2 | X1)PNeural(X3 | X1, X2) PNeural (Xa | X1, X2, X3)

Assume specific functional form for the conditionals. A sufficiently
deep neural net can approximate any function.
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Continuous variables

e If X is a continuous random variable, we can usually represent it using
its probability density function px : R — R™. However, we cannot
represent this function as a table anymore. Typically consider
parameterized densities:

o Gaussian: X ~ N (p,0) if px(x) = = 12 e~ b—n)? /207

o Uniform: X ~ U(a, b) if px(x) = z1[a < x < b]
o Etc.

b

o If X is a continuous random vector, we can usually represent it using
its joint probability density function:
o Gaussian: X ~ N(p, X) if
1 1 -1
px(x) = Toos P (“3(x—p) T (x— )

@ Chain rule, Bayes rule, etc all still apply. For example,

px.v,z(x,¥,2) = px(X)pyix (¥ | X)Pziix,v}(Z | X, ¥)
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Continuous variables

@ This means we can still use Bayesian networks with continuous (and
discrete) variables. Examples:
o Mixture of 2 Gaussians: Network Z — X with factorization
pz.x(z,x) = pz(z)px|z(x | z) and
o Z ~ Bernoulli(p)
o X[ (Z=0)~N(uo,00) . X | (Z=1) ~ N(yu1,01)
e The parameters are p, g, 09, i1, 01
o Network Z — X with factorization pz x(z,x) = pz(z)px|z(x | 2)
o Z~U(a,b)
o X|(Z=2z)~N(z0)
o The parameters are a, b,o
e Variational autoencoder: Network Z — X with factorization
pzx(z,x) = pz(z)px|z(x | z) and
o Z~N(0,1)
o X |(Z=2z)~ N(ug(z),e??) where pg : R — R and o4 are neural
networks with parameters (welghts) 0, ¢ respectively
o Note: Even if 119,04 are very deep (flexible), functional form is still
Gaussian
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