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Summary

Major themes in the course

Representation: Latent variable vs. fully observed

Objective function and optimization algorithm: Many divergences and
distances optimized via likelihood-free (two sample test) or likelihood
based methods

Evaluation of generative models

Combining different models and variants

Plan for today: Discrete Latent Variable Modeling
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Why should we care about discreteness?

Discreteness is all around us!

Decision Making: Should I attend CS 236 lecture or not?

Structure learning
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Why should we care about discreteness?

Many data modalities are inherently discrete

Networks

Text

DNA Sequences, Program Source Code, Molecules and lots more
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Stochastic Optimization

Consider the following optimization problem

max
φ

Eqφ(z)[f (z)]

Recap example: Think of q(·) as the inference distribution for a VAE

max
θ,φ

Eqφ(z|x)

[
log pθ(x, z)

log q(z|x)

]
.

Gradients w.r.t. θ can be derived via linearity of expectation

∇θEq(z;φ)[log p(z, x; θ)− log q(z;φ)] = Eq(z;φ)[∇θ log p(z, x; θ)]

≈ 1

k

∑
k

∇θ log p(zk , x; θ)

If z is continuous, q(·) is reparameterizable, and f (·) is differentiable in φ,
then we can use reparameterization to compute gradients w.r.t. φ

What if any of the above assumptions fail?
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Stochastic Optimization with REINFORCE

Consider the following optimization problem

max
φ

Eqφ(z)[f (z)]

For many class of problem scenarios, reparameterization trick is
inapplicable

Scenario 1: f (·) is non-differentiable in φ e.g., optimizing a black
box reward function in reinforcement learning

Scenario 2: qφ(z) cannot be reparameterized as a differentiable
function of φ with respect to a fixed base distribution e.g., discrete
distributions

REINFORCE is a general-purpose solution to both these scenarios

We will first analyze it in the context of reinforcement learning and
then extend it to latent variable models with discrete latent variables
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REINFORCE for reinforcement learning

Example: Pulling arms of slot machines Which arm to pull?

Set A of possible actions. E.g., pull arm 1, arm 2, . . . , etc.

Each action z ∈ A has a reward f (z)

Randomized policy for choosing actions qφ(z) parameterized by φ .
For example, φ could be the parameters of a multinomial distribution

Goal: Learn the parameters φ that maximize our earnings (in
expectation)

max
φ

Eqφ(z)[f (z)]
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Policy Gradients

Want to compute a gradient with respect to φ of the expected reward

Eqφ(z)[f (z)] =
∑
z

qφ(z)f (z)

∂

∂φi
Eqφ(z)[f (z)] =

∑
z
∂qφ(z)
∂φi

f (z) =
∑

z qφ(z) 1
qφ(z)

∂qφ(z)
∂φi

f (z)

=
∑

z qφ(z)
∂ log qφ(z)

∂φi
f (z) = Eqφ(z)

[
∂ log qφ(z)

∂φi
f (z)

]
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REINFORCE Gradient Estimation

Want to compute a gradient with respect to φ of

Eqφ(z)[f (z)] =
∑
z

qφ(z)f (z)

The REINFORCE rule is

∇φEqφ(z)[f (z)] = Eqφ(z) [f (z)∇φ log qφ(z)]

We can now construct a Monte Carlo estimate

Sample z1, · · · , zK from qφ(z) and estimate

∇φEqφ(z)[f (z)] ≈ 1

K

∑
k

f (zk)∇φ log qφ(zk)

Assumption: The distribution q(·) is easy to sample from and evaluate
probabilities

Works for both discrete and continuous distributions
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Variational Learning of Latent Variable Models

To learn the variational approximation we need to compute the gradient
with respect to φ of

L(x; θ, φ) =
∑
z

qφ(z|x) log p(z, x; θ) + H(qφ(z|x))

= Eqφ(z|x)[log p(z, x; θ)− log qφ(z|x))]

The function inside the brackets also depends on φ (and θ, x). Want to
compute a gradient with respect to φ of

Eqφ(z|x)[f (φ, θ, z, x)] =
∑
z

qφ(z|x)f (φ, θ, z, x)

The REINFORCE rule is

∇φEqφ(z|x)[f (φ, θ, z, x)] = Eqφ(z|x) [f (φ, θ, z, x)∇φ log qφ(z|x) +∇φf (φ, θ, z, x)]

We can now construct a Monte Carlo estimate of ∇φL(x; θ, φ)
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REINFORCE Gradient Estimates have High Variance

Want to compute a gradient with respect to φ of

Eqφ(z)[f (z)] =
∑
z

qφ(z)f (z)

The REINFORCE rule is

∇φEqφ(z)[f (z)] = Eqφ(z) [f (z)∇φ log qφ(z)]

Monte Carlo estimate: Sample z1, · · · , zK from qφ(z)

∇φEqφ(z)[f (z)] ≈ 1

K

∑
k

f (zk)∇φ log qφ(zk) := fMC(z1, · · · , zK )

Monte Carlo estimates are unbiased

Ez1,··· ,zK∼qφ(z)
[
fMC(z1, · · · , zK )

]
= Eqφ(z)[f (z)]

Almost never used in practice because of high variance

Variance can be reduced via carefully designed control variates
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Control Variates

The REINFORCE rule is

∇φEqφ(z)[f (z)] = Eqφ(z) [f (z)∇φ log qφ(z)]

Given any constant B (a control variate)

∇φEqφ(z)[f (z)] = Eqφ(z) [(f (z)− B)∇φ log qφ(z)]

To see why,

Eqφ(z) [B∇φ log qφ(z)] = B
∑
z

qφ(z)∇φ log qφ(z) = B
∑
z

∇φqφ(z)

= B∇φ
∑
z

qφ(z) = B∇φ1 = 0

Monte Carlo estimates of both f (z) and f (z)− B have same expectation

These estimates can however have different variances
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Control variates

Suppose we want to compute

Eqφ(z)[f (z)] =
∑
z

qφ(z)f (z)

Define
f̂ (z) = f (z) + a

(
h(z)− Eqφ(z)[h(z)]

)
h(z) is referred to as a control variate

Assumption: Eqφ(z)[h(z)] is known

Monte Carlo estimates of f (z) and f̂ (z) have the same expectation

Ez1,··· ,zK∼qφ(z)[f̂MC(z1, · · · , zK )] = Ez1,··· ,zK∼qφ(z)[fMC(z1, · · · , zK )]

but different variances

Can try to learn and update the control variate during training
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Control variates

Can derive an alternate Monte Carlo estimate for REINFORCE
gradients based on control variates

Sample z1, · · · , zK from qφ(z)

∇φEqφ(z)[f (z)]

= Eqφ(z)[f (z) + a
(
h(z)− Eqφ(z)[h(z)]

)
]

≈ 1
K

∑
k f (zk)∇φ log qφ(zk) + a

(
1
K

∑K
k=1 h(zk)− Eqφ(z)[h(z)]

)
:= fMC(z1, · · · , zK ) + a

(
hMC(z1, · · · , zK )− Eqφ(z)[h(z)]

)
:= f̂MC(z1, · · · , zK )

What is Var(f̂MC) vs. Var(fMC)?

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 14 14 / 29



Control variates

Comparing Var(f̂MC) vs. Var(fMC)

Var(f̂MC) = Var(fMC + a
(
hMC − Eqφ(z)[h(z)]

)
)

= Var(fMC + ahMC)

= Var(fMC) + a2Var(hMC) + 2aCov(fMC, hMC)

To get the optimal coefficient a∗ that minimizes the variance, take
derivatives w.r.t. a and set them to 0

a∗ = −Cov(fMC, hMC)

Var(hMC)
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Control variates

Comparing Var(f̂MC) vs. Var(fMC)

Var(f̂MC) = Var(fMC) + a2Var(hMC) + 2aCov(fMC, hMC)

Setting the coefficient a = a∗ = −Cov(fMC,hMC)
Var(hMC)

Var(f̂MC) = Var(fMC)− Cov(fMC, hMC)2

Var(hMC)

= Var(fMC)− Cov(fMC, hMC)2

Var(hMC)Var(fMC)
Var(fMC)

= (1− ρ(fMC, hMC)2)Var(fMC)

Correlation coefficient ρ(fMC, hMC) is between -1 and 1. For maximum
variance reduction, we want fMC and hMC to be highly correlated
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Neural Variational Inference and Learning (NVIL)

Latent variable models with discrete latent variables are often referred
to as belief networks

Variational learning objective is same as ELBO

L(x; θ, φ) =
∑
z

qφ(z|x) log p(z, x; θ) + H(qφ(z|x))

= Eqφ(z|x)[log p(z, x; θ)− log qφ(z|x))]

:= Eqφ(z|x)[f (φ, θ, z, x)]

Here, z is discrete and hence we cannot use reparameterization
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Neural Variational Inference and Learning (NVIL)

NVIL (Mnih&Gregor, 2014) learns belief networks via REINFORCE +
control variates

Learning objective

L(x; θ, φ, ψ,B) = Eqφ(z|x)[f (φ, θ, z, x)− hψ(x)− B]

Control Variate 1: Constant baseline B

Control Variate 2: Input dependent baseline hψ(x)

Both B and ψ are learned via gradient descent

Gradient estimates w.r.t. φ

∇φL(x; θ, φ, ψ,B)

= Eqφ(z|x) [(f (φ, θ, z, x)− hψ(x)− B)∇φ log qφ(z|x) +∇φf (φ, θ, z, x)]
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Towards reparameterized, continuous relaxations

Consider the following optimization problem

max
φ

Eqφ(z)[f (z)]

What if z is a discrete random variable?

Categories
Permutations

Reparameterization trick is not directly applicable

REINFORCE is a general-purpose solution, but needs careful design of
control variates

Alternative: Relax z to a continuous random variable with a
reparameterizable distribution
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Gumbel Distribution

Setting: We are given i.i.d. samples y1, y2, ..., yn from some
underlying distribution How can we model the distribution of

g = max{y1, y2, ..., yn}

E.g., predicting maximum water level in a river for a particular river
based on historical data to detect flooding

The Gumbel distribution is very useful for modeling extreme, rare
events, e.g., natural disasters, finance

CDF for a Gumbel random variable g is parameterized by a location
parameter µ and a scale parameter β

F (g ;µ, β) = exp

(
− exp

(
−g − µ

β

))
Note: If g is a Gumbel(µ, β) r.v., − log g is an Exponential(µ, β) r.v.
Often, Gumbel r.v. are referred to as doubly exponential r.v.
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Categorical Distributions

Let z denote a k-dimensional categorical random variable with
distribution q parameterized by class probabilities
π = {π1, π2, . . . , πk}. We will represent z as a one-hot vector

Gumbel-Max reparameterization trick for sampling from
categorical random variables

z = one hot

(
arg max

i
(gi + log πi )

)
where g1, g2, . . . , gk are i.i.d. samples drawn from Gumbel(0, 1)

In words, we can sample from Categorical(π) by taking the arg max
over k Gumbel perturbed log-class probabilities gi + log πi

Reparametrizable since randomness is transferred to a fixed
Gumbel(0, 1) distribution!

Problem: arg max is non-differentiable w.r.t. π
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Relaxing Categorical Distributions to Gumbel-Softmax

Gumbel-Max Sampler (non-differentiable w.r.t. π):

z = one hot

(
arg max

i
(gi + logπ)

)

Key idea: Replace arg max with soft max to get a Gumbel-Softmax
random variable ẑ

Ouput of softmax is differentiable w.r.t. π

Gumbel-Softmax Sampler (differentiable w.r.t. π):

ẑ = soft max
i

(
gi + logπ

τ

)
where τ > 0 is a tunable parameter referred to as the temperature
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Bias-variance tradeoff via temperature control

Gumbel-Softmax distribution is parameterized by both class probabilities π
and the temperature τ > 0

ẑ = soft max
i

(
gi + logπ

τ

)
Temperature τ controls the degree of the relaxation via a bias-variance
tradeoff

As τ → 0, samples from Gumbel-Softmax(π, τ) are similar to samples from
Categorical(π)
Pro: low bias in approximation Con: High variance in gradients

As τ →∞, samples from Gumbel-Softmax(π, τ) are similar to samples from
Categorical

([
1
k ,

1
k , . . . ,

1
k

])
(i.e., uniform over k categories)
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Geometric Interpretation

Consider a categorical distibution with class probability vector
π = [0.60, 0.25, 0.15]
Define a probability simplex with the one-hot vectors as vertices

For a categorical distribution, all probability mass is concentrated at
the vertices of the probability simplex
Gumbel-Softmax samples points within the simplex (lighter color
intensity implies higher probability)
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Gumbel-Softmax in action

Original optimization problem

max
φ

Eqφ(z)[f (z)]

where qφ(z) is a categorical distribution and φ = π

Relaxed optimization problem

max
φ

Eqφ(ẑ)[f (ẑ)]

where qφ(ẑ) is a Gumbel-Softmax distribution and φ = {π, τ}
Usually, temperature τ is explicitly annealed. Start high for low
variance gradients and gradually reduce to tighten approximation
Note that ẑ is not a discrete category. If the function f (·) explicitly
requires a discrete z, then we estimate straight-through gradients:

Use hard z ∼ Categorical(z) for evaluating objective in forward pass
Use soft ẑ ∼ GumbelSoftmax(ẑ, τ) for evaluating gradients in backward
pass
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Combinatorial, Discrete Objects: Permutations

For many applications which require ranking and matching data in an
unsupervised manner, z is represented as a latent permutation

A k-dimensional permutation z is a ranked list of k indices
{1, 2, . . . , k}
Stochastic optimization problem

max
φ

Eqφ(z)[f (z)]

where qφ(z) is a distribution over k-dimensional permutations

First attempt: Each permutation can be viewed as a distinct category.
Relax categorical distribution to Gumbel-Softmax

Infeasible because number of possible k-dimensional permutations is
k!. Gumbel-softmax does not scale for combinatorially large number
of categories
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Plackett-Luce (PL) Distribution

In many fields such as information retrieval and social choice theory,
we often want to rank our preferences over k items. The
Plackett-Luce (PL) distribution is a common modeling assumption
for such rankings

A k-dimensional PL distribution is defined over the set of
permutations Sk and parameterized by k positive scores s
Sequential sampler for PL distribution

Sample z1 without replacement with probability proportional to the
scores of all k items

p(z1 = i) ∝ si

Repeat for z2, z3, . . . , zk

PDF for PL distribution

qs(z) =
sz1
Z

sz2
Z − sz1

sz3
Z −

∑2
i=1 szi

· · · szk
Z −

∑k−1
i=1 szi

where Z =
∑k

i=1 si is the normalizing constant
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Relaxing PL Distribution to Gumbel-PL

Gumbel-PL reparameterized sampler
Add i.i.d. standard Gumbel noise g1, g2, . . . , gk to the log scores
log s1, log s2, . . . , log sk

s̃i = gi + log si

Set z to be the permutation that sorts the Gumbel perturbed
log-scores, s̃1, s̃2, . . . , s̃k

s z

θ

f

(a) Sequential Sampler

log s+ g z

θ

f
sort

(b) Reparameterized Sampler

Figure: Squares and circles denote deterministic and stochastic nodes.

Challenge: the sorting operation is non-differentiable in the inputs

Solution: Use a differentiable relaxation. See the paper ”Stochastic
Optimization for Sorting Networks via Continuous Relaxations” for
more details
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Summary

Discovering discrete latent structure e.g., categories, rankings,
matchings etc. has several applications

Stochastic Optimization w.r.t. parameterized discrete distributions is
challenging

REINFORCE is the general purpose technique for gradient estimation,
but suffers from high variance

Control variates can help in controlling the variance

Continuous relaxations to discrete distributions offer a biased,
reparameterizable alternative with the trade-off in significantly lower
variance
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