
Energy Based Models

Stefano Ermon, Aditya Grover

Stanford University

Lecture 13

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 1 / 21



Summary

Story so far

Representation: Latent variable vs. fully observed

Objective function and optimization algorithm: Many divergences and
distances optimized via likelihood-free (two sample test) or likelihood
based methods

Plan for today: Energy based models

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 2 / 21



Likelihood based learning

Probability distributions p(x) are a key building block in generative
modeling. Properties:

1 non-negative: p(x) ≥ 0

2 sum-to-one:
∑

x p(x) = 1 (or
∫
p(x)dx = 1 for continuous variables)

Sum-to-one is key:

Total “volume” is fixed: increasing p(xtrain) guarantees that xtrain becomes
relatively more likely (compared to the rest).

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 3 / 21



Parameterizing probability distributions

Probability distributions p(x) are a key building block in generative
modeling. Properties:

1 non-negative: p(x) ≥ 0

2 sum-to-one:
∑

x p(x) = 1 (or
∫
p(x)dx = 1 for continuous variables)

Coming up with a non-negative function pθ(x) is not hard. For example:

gθ(x) = fθ(x)
2 where fθ is any neural network

gθ(x) = exp(fθ(x)) where fθ is any neural network

· · ·
Problem: gθ(x) ≥ 0 is easy, but gθ(x) might not sum-to-one.∑

x gθ(x) = Z (θ) ̸= 1 in general, so gθ(x) not a valid probability mass
function or density

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 4 / 21



Likelihood based learning

Problem: gθ(x) ≥ 0 is easy, but gθ(x) might not be normalized
Solution:

pθ(x) =
1

Volume(gθ)
gθ(x) =

1∫
gθ(x)dx

gθ(x)

Then by definition,
∫
pθ(x)dx = 1. Typically, choose gθ(x) so that we

know the volume analytically as a function of θ. For example,

1 g(µ,σ)(x) = e−
(x−µ)2

2σ2 . The volume is:
∫
e−

x−µ

2σ2 dx =
√
2πσ2.

2 gλ(x) = e−λx . The volume is:
∫ +∞
0 e−λxdx = 1

λ .

3 Etc.

We can only choose functional forms gθ(x) that we can integrate
analytically. This is very restrictive, but as we have seen, they are very
useful as building blocks

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 5 / 21



Likelihood based learning

Problem: gθ(x) ≥ 0 is easy, but gθ(x) might not be normalized
Solution:

pθ(x) =
1

Volume(gθ)
gθ(x) =

1∫
gθ(x)dx

gθ(x)

Typically, choose gθ(x) so that we know the volume analytically. More complex
models can be obtained by combining these building blocks. Two main strategies:

1 Products of normalized objects pθ(x)pθ′(x)(y):∫
x

∫
y
pθ(x)pθ′(x)(y)dxdy =

∫
x
pθ(x)

∫
y

pθ′(x)(y)dy︸ ︷︷ ︸
=1

dx =
∫
x
pθ(x)dx = 1

2 Mixtures of normalized objects αpθ(x) + (1− α)pθ′(x) :∫
x
αpθ(x) + (1− α)pθ′(x)dx = α+ (1− α) = 1

How about using models where the “volume”/normalization constant is not easy
to compute analytically?

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 6 / 21



Energy based model

pθ(x) =
1∫

exp(fθ(x))dx
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

The volume/normalization constant

Z (θ) =

∫
exp(fθ(x))dx

is also called the partition function. Why exponential (and not e.g. fθ(x)2)?

1 Want to capture very large variations in probability. log-probability is the
natural scale we want to work with. Otherwise need highly non-smooth fθ.

2 Exponential families. Many common distributions can be written in this
form.

3 These distributions arise under fairly general assumptions in statistical
physics (maximum entropy, second law of thermodynamics). −fθ(x) is called
the energy, hence the name. Intuitively, configurations x with low energy
(high fθ(x)) are more likely.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 7 / 21



Energy based model

pθ(x) =
1∫

exp(fθ(x))dx
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

Pros:

1 can plug in pretty much any function fθ(x) you want

Cons (lots of them):

1 Sampling from pθ(x) is hard

2 Evaluating and optimizing likelihood pθ(x) is hard (learning is hard)

3 No feature learning (but can add latent variables)

Curse of dimensionality: The fundamental issue is that computing Z (θ)
numerically (when no analytic solution is available) scales exponentially in
the number of dimensions of x. Nevertheless, some tasks do not require
knowing Z (θ)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 8 / 21



Applications of Energy based models

pθ(x) =
1∫

exp(fθ(x))dx
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

Given x, x′ evaluating pθ(x) or pθ(x′) requires Z (θ). However, their ratio

pθ(x)

pθ(x′)
= exp(fθ(x)− fθ(x

′))

does not involve Z (θ). This means we can easily check which one is more likely.
Applications:

1 anomaly detection

2 denoising

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 9 / 21



Applications of Energy based models

Given a trained model, many applications require relative comparisons. Hence
Z (θ) is not needed.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 10 / 21



Example: Ising Model

There is a true image y ∈ {0, 1}3×3, and a corrupted image x ∈ {0, 1}3×3.
We know x, and want to somehow recover y.

We model the joint probability distribution p(y, x) as

p(y, x) =
1

Z
exp

∑
i

ψi (xi , yi ) +
∑

(i,j)∈E

ψij (yi , yj )


ψi (xi , yi ): the i-th corrupted pixel depends on the i-th original pixel
ψij(yi , yj): neighboring pixels tend to have the same value

How did the original image y look like? Solution: maximize p(y|x)

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 11 / 21



Example: Product of Experts

Suppose you have trained several models qθ1(x), rθ2(x), tθ3(x). They
can be different models (PixelCNN, Flow, etc.)

Each one is like an expert that can be used to score how likely an
input x is.

Assuming the experts make their judgments indpendently, it is
tempting to ensemble them as

pθ1(x)qθ2(x)rθ3(x)

To get a valid probability distribution, we need to normalize

pθ1,θ2,θ3(x) =
1

Z (θ1, θ2, θ3)
qθ1(x)rθ2(x)tθ3(x)

Note: similar to an AND operation (e.g., probability is zero as long as
one model gives zero probability), unlike mixture models which
behave more like OR

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 12 / 21



Example: Restricted Boltzmann machine (RBM)

RBM: energy-based model with latent variables

Two types of variables:
1 x ∈ {0, 1}n are visible variables (e.g., pixel values)
2 z ∈ {0, 1}m are latent ones

The joint distribution is

pW ,b,c(x, z) =
1

Z
exp

(
xTW z+ bx+ cz

)
=

1

Z
exp

(
n∑

i=1

m∑
j=1

xizjwij + bx+ cz

)

Restricted because there are no visible-visible and hidden-hidden
connections, i.e., xixj or zizj terms in the objective

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 13 / 21



Applications: Deep Boltzmann Machines

Stacked RBMs are one of the first deep generative models:

Bottom layer variables v are pixel values. Layers above (h) represent
“higher-level” features (corners, edges, etc). Early deep neural networks
for supervised learning had to be pre-trained like this to make them work.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 14 / 21



Applications: Boltzmann Machines

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 15 / 21



Energy based models: learning and inference

pθ(x) =
1∫

exp(fθ(x))
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

Pros:

1 can plug in pretty much any function fθ(x) you want

Cons (lots of them):

1 Sampling is hard

2 Evaluating likelihood (learning) is hard

3 No feature learning

Curse of dimensionality: The fundamental issue is that computing Z (θ)
numerically (when no analytic solution is available) scales exponentially in
the number of dimensions of x.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 16 / 21



Computing the normalization constant is hard

As an example, the RBM joint distribution is

pW ,b,c(x, z) =
1

Z
exp

(
xTW z+ bx+ cz

)
where

1 x ∈ {0, 1}n are visible variables (e.g., pixel values)
2 z ∈ {0, 1}m are latent ones

The normalization constant (the “volume”) is

Z (W , b, c) =
∑

x∈{0,1}n

∑
z∈{0,1}m

exp
(
xTW z+ bx+ cz

)
Note: it is a well defined function of the parameters W , b, c , just hard
to compute. Takes time exponential in n,m to compute. This means
that evaluating the objective function pW ,b,c(x, z) for likelihood based
learning is hard.
Optimizing the un-normalized probability exp

(
xTW z+ bx+ cz

)
is

easy (w.r.t. trainable parameters W , b, c), but optimizing the
likelihood pW ,b,c(x, z) is also difficult..

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 17 / 21



Training intuition

Goal: maximize fθ(xtrain)
Z(θ) . Increase numerator, decrease denominator.

Intuition: because the model is not normalized, increasing the
un-normalized probability fθ(xtrain) by changing θ does not guarantees that
xtrain becomes relatively more likely (compared to the rest).

We also need to take into account the effect on other “wrong points” and
try to “push them down” to also make Z (θ) small.

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 18 / 21



Contrastive Divergence

Goal: maximize fθ(xtrain)
Z(θ)

Idea: Instead of evaluating Z (θ) exactly, use a Monte Carlo estimate.

Contrastive divergence algorithm: sample xsample ∼ pθ, take step on
∇θ (fθ(xtrain)− fθ(xsample)). Make training data more likely than typical
sample from the model. Recall comparisons are easy in energy based models!

Looks simple, but wow to sample? Unfortunately, sampling is hard

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 19 / 21



Sampling from Energy based models

pθ(x) =
1∫

exp(fθ(x))
exp(fθ(x)) =

1

Z (θ)
exp(fθ(x))

No direct way to sample like in autoregressive or flow models. Main
issue: cannot easily compute how likely each possible sample is

However, we can easily compare two samples x, x′.

Use an iterative approach called Markov Chain Monte Carlo:
1 Initialize x0 randomly, t = 0
2 Let x ′ = x t + noise

1 If fθ(x
′) > fθ(x

t), let x t+1 = x ′

2 Else let x t+1 = x ′ with probability exp(fθ(x
′)− fθ(x

t))

3 Go to step 2

Works in theory, but can take a very long time to converge

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 20 / 21



Conclusion

Energy-based models are another useful tool for modeling
high-dimensional probability distributions.

Very flexible class of models. Currently less popular because of
computational issues.

Energy based GANs: energy is represented by a discriminator.
Contrastive samples (like in contrastive divergence) from a GAN-styke
generator.

Reference: LeCun et. al, A Tutorial on Energy-Based Learning [Link]

Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 13 21 / 21

http://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf

