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Model family
Story so far

@ Representation: Latent variable vs. fully observed

@ Objective function and optimization algorithm: Many divergences and
distances optimized via likelihood-free (two sample test) or likelihood
based methods

@ Each have Pros and Cons

Plan for today: Combining models
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Variational Autoencoder

X

A mixture of an infinite number of Gaussians:
Q@ z~ N(0,/)
Q p(x|z) =N (no(z), Xo(z)) where 19, Xy are neural networks

@ p(x | z) and p(z) usually simple, e.g., Gaussians or conditionally
independent Bernoulli vars (i.e., pixel values chosen independently
given z)

Q Idea: increase complexity using an autoregressive model

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 12 3/19



PixelVAE (Gulrajani et al.,2017)
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Generation:
Autoregressive sampling

Training: Teacher forcing
Gulrajani et. al, 2017
@ z is a feature map with the same resolution as the image x
@ Autoregressive structure: p(x | z) =[], p(x; | x1,- -+, xi—1,2)
e p(x|z)is a Pixel CNN
o Prior p(z) can also be autoregressive
o Can be hierarchical: p(x | z1)p(z1 | z2)

@ State-of-the art log-likelihood on some datasets; learns features (unlike
PixelCNN); computationally cheaper than PixelCNN (shallower)
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Autoregressive flow

®

@ Flow model, the marginal likelihood p(x) is given by

(53)

where pz(z) is typically simple (e.g., a Gaussian). More complex
prior?

px(x:0) = pz (£, (x))

@ Prior pz(z) can be autoregressive pz(z) = [[; p(zi | z1, -
@ Autoregressive models are flows. Just another MAF layer.

@ See also neural autoregressive flows (Huang et al., ICML-18)
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VAE + Flow Model

log p(x;0) > Y q(zlx; ¢)log p(z,x; 0) + H(q(z|x; ¢)) = L(x;6, ¢)
z v
ELBO
= L(x0,¢9)+  Dri(q(z | x;9)lp(z|x;0))
Gap between true log-likelihood and ELBO

e q(z|x; ¢) is often too simple (Gaussian) compared to the true
posterior p(z|x; #), hence ELBO bound is loose

o Idea: Make posterior more flexible: 2’ ~ q(Z|x; ¢), z = fy(z) for an
invertible fy (Rezende and Mohamed, 2015; Kingma et al., 2016)

@ Still easy to sample from, and can evaluate density.
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VAE + Flow Model

7

(a) Prior distribution (b) Posteriors in standard VAE  (c) Posteriors in VAE with IAF

Posterior approximation is more flexible, hence we can get tighter ELBO
(closer to true log-likelihood).
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Multimodal variants

\|

~

Wu and Goodman, 2018

@ Goal: Learn a joint distribution over the two domains p(xi, x2), e.g., color
and gray-scale images Can use a VAE style model:

@ Learn py(x1,x2), use inference nets q4(z | x1), 94(z | x2), go(z | X1, X2).
Conceptually similar to semi-supervised VAE in HW2.
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Variational RNN

@ Goal: Learn a joint distribution over a sequence p(xy,--- ,x7)

@ VAE for sequential data, using latent variables z,--- , zr. Instead of
training separate VAEs z; — x;, train a joint model:

T
plx<t,z<7) = HP(Xt | z<ts x<e)P(2e | Z<e, X<t)
t=1
® ® O
S O ©)o b o ©
O, O ©) ©
(a) Prior (b) Generation (c) Recurrence (d) Inference

Chung et al, 2016

@ Use RNNs to model the conditionals (similar to PixelRNN)
@ Use RNNs for inference p(z<1|x<7) = H;l q(z¢ | z<r, x<t)

@ Train like VAE to maximize ELBO. Conceptually similar to PixelVAE.

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 12 9 /19



Combining losses

fo

e Flow model, the marginal likelihood p(x) is given by

ot <8f9_81(x)> ‘

@ Can also be thought of as the generator of a GAN

px(x;0) = pz (f,1(x))

@ Should we train by ming Dk (pdata, Po) or ming JSD(pgata, Po)?
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Although Dy (pdatas pg) = 0 if and only if JSD(pgata, o) = 0, optimizing
one does not necessarily optimize the other. If z, x have same dimensions,

can optimize ming KL(Pdata; po) + AJSD(Pdata; P9)

Objective | Inception Score | Test NLL (in bits/dim)
MLE
ADV 5.76 8.53

2.92 ‘ 3.54

Hybrid (A = 1) 3.90 4.21
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Adversarial Autoencoder (VAE + GAN)

e

L(x;0,9) +Dri(q(z | x; ¢)|[p(z[x; 0))
ELBO
Expgoes l0g p(x;0) — Dia(a(z | x; 9)[lp(2]x; 6))]

log p(x; 6)

Expgos [L(x: 0, 0)]
—_——

~training obj.

up to const.

=7 Dy (pasta () 1P(%: 0)) — Exp, [Dke (a2 | x: 9) 1 p(2]; )]

equiv. to MLE

@ Note: regularized maximum likelihood estimation

@ Can add in a GAN objective —JSD(pgata, p(x; 0)) to get sharper samples,
i.e., discriminator attempting to distinguish VAE samples from real ones.
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An alternative interpretation

o2 je—p
®

Ex~pyara [l0g p(x; 0) — D (a(z | x; ¢)||p(z/x; 0))]

Expgoes [£(X: 0, 9)]
N—— —_——

~training obj.

up to const.

= —Dki(pdata(X)|p(x; 0)) = Ex~pyers [Dkr(a(z | x; 9)|p(2]x; 6))]

Pdata(X) q(z | x; ¢)
- zx:pdata(x) <|° ( 9) + Zq(z ‘ X; ¢)I p(Z|X;0) )

_ q(z | X; ¢)Pdata(X)
- Xx: Pdata(X) <Z: q(z | x; ¢) log p(zx;0)p(x;6)>

XZZ:Pdata( )a(z | x; ¢) log p(x; 0)p(z]x; 0)
— Dk (pdata(x)q(z | x; #) || p(x; 0)p(2]x; 0))

q(z,x;¢) p(z,x;0)
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An alternative interpretation

Ex~pyara [L(%: 0, &) = —Dii(Paata(x)a(z | x; §) || p(x; 0)p(z]x: 0))
N——

ELBO q(z,x;¢) p(z,x;0)

@ Optimizing ELBO is the same as matching the inference distribution
q(z,x; ¢) to the generative distribution p(z,x; 0) = p(z)p(x|z; 0)

@ Intuition: p(x; 8)p(z|x; 0) = paata(X)q(z | x; @) if

o pdata(x) = P(X; 0)

Q q(z | x; ¢) = p(z|x; 0) for all x

© Hence we get the VAE objective:

— Dk (Pdata(X)[|P(%; 0)) = Expones [Drci(a(z | x; 0)|[p(2]x: 6))]

@ Many other variants are possible! VAE + GAN:

—JISD(pdata(x)||P(x; 0)) = Dki(Pdata(X)[|P(X; 0)) — Ex~pyars [Prr(a(z | x; @) p(2]x; 0))]
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Adversarial Autoencoder (VAE + GAN)

Exmpgara[L(Xi 0, 9)] = =Dk (Pdara(x)q(z | x; ¢) || p(x; 0)p(z[x; 0))
N ——
ELBO q(z,x;¢) p(z,x;0)
@ Optimizing ELBO is the same as matching the inference distribution
q(z,x; ¢) to the generative distribution p(z, x; 0)

@ Symmetry: Using alternative factorization:
p(z)p(x|z;0) = q(z; 9)a(x | z; ¢) if
Q q(z: ¢) = p(2)
Q q(x |z ¢) = p(x|z; 8) for all z
© We get an equivalent form of the VAE objective:
—Dx1(q(z: 9)lIPp(2)) — Eznq(zio) [Dri(q(x | 2 0)[|p(x|2; 6))]
@ Other variants are possible. For example, can add —JSD(q(z; ¢)||p(z)) to
match features in latent space (Zhao et al., 2017; Makhzani et al, 2018)
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Information Preference

Exnpyara [L(%: 0, &) = —Dii(Paata(x)a(z | x; §) || p(x; 0)p(z]x; 0))
N——

ELBO q(z,x;¢) p(z,x;0)

@ ELBO is optimized as long as g(z,x; ¢) = p(z,x; 8). Many solutions are
possible! For example,
Q p(z,x;0) = p(z)p(x|z; ) = p(z)Pdata(x)
Q q(z,%;¢) = paata(x)a(2|%; §) = Paata(x)P(2)
© Note z and z are independent. z carries no information about x. This
happens in practice when p(x|z; 8) is too flexible, like PixelCNN.

@ lIssue: Many more variables than constraints
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Information Maximizing

@ Explicitly add a mutual information term to the objective
—Dki(pdata(x)q(z | x; ) || p(x; 0)p(z]x; 0)) + oMl (x, 2)

q(z,x;¢) p(z,x:0)

@ Ml intuitively measures how far x and z are from being independent
Mi(x,z) = Dxw (p(z, x; )| p(2)p(x; 0))

@ InfoGAN (Chen et al, 2016) used to learn meaningful (disentangled?)
representations of the data

MI(x,z) — Ex~p, [Dki(po(z|x)|lqs(2[x))] — JSD(pdata(x)|lpo(x))
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EAY/\=

Model proposed to learn disentangled features (Higgins, 2016)

—Eqy(x2)[108 Po(X[2)] + BExpysi, [Die(a6(2[x)[[P(2))]

It is a VAE with scaled up KL divergence term. This is equivalent (up to
constants) to the following objective:

(8 = 1)MI(x; z) + 6Dki(q4(2)l|p(2))) + Eq, z)[Dre(as(x2) [ pa(x]2))]

See The Information Autoencoding Family: A Lagrangian Perspective on
Latent Variable Generative Models for more examples.

Stefano Ermon, Aditya Grover (Al Lab) Deep Generative Models Lecture 12 18 /19



Conclusion

@ We have covered several useful building blocks: autoregressive, latent
variable models, flow models, GANSs.

@ Can be combined in many ways to achieve different tradeoffs: many
of the models we have seen today were published in top ML
conferences in the last couple of years

@ Lots of room for exploring alternatives in your projects!

@ Which one is best? Evaluation is tricky. Still largely empirical
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