Variants and Combinations of Basic Models

Stefano Ermon, Aditya Grover

Stanford University

Lecture 12

Summary

Story so far

- Representation: Latent variable vs. fully observed
- Objective function and optimization algorithm: Many divergences and distances optimized via likelihood-free (two sample test) or likelihood based methods
- **•** Each have Pros and Cons

Plan for today: Combining models

Variational Autoencoder

A mixture of an infinite number of Gaussians:

- ¹ **z** *∼ N* (0*, I*)
- **2** $p(\mathbf{x} | \mathbf{z}) = \mathcal{N}(\mu_{\theta}(\mathbf{z}), \Sigma_{\theta}(\mathbf{z}))$ where $\mu_{\theta}, \Sigma_{\theta}$ are neural networks
- \bullet $p(x | z)$ and $p(z)$ usually simple, e.g., Gaussians or conditionally independent Bernoulli vars (i.e., pixel values chosen independently given **z**)
- ⁴ **Idea**: increase complexity using an autoregressive model

PixelVAE (Gulrajani et al.,2017)

- **z** is a feature map with the same resolution as the image **x**
- Autoregressive structure: $p(\mathbf{x} | \mathbf{z}) = \prod_i p(x_i | x_1, \dots, x_{i-1}, \mathbf{z})$
	- $p(x | z)$ is a PixelCNN
	- Prior $p(z)$ can also be autoregressive
	- Can be hierarchical: $p(x | z_1)p(z_1 | z_2)$
- State-of-the art log-likelihood on some datasets; learns features (unlike PixelCNN); computationally cheaper than PixelCNN (shallower)

Autoregressive flow

$$
\begin{pmatrix}\n z \\
 \hline\n\end{pmatrix}
$$

• Flow model, the marginal likelihood $p(x)$ is given by

$$
p_X(\mathbf{x}; \theta) = p_Z\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right) \left| \det \left(\frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|
$$

where $p_Z(z)$ is typically simple (e.g., a Gaussian). More complex prior?

- Prior $p_Z(z)$ can be autoregressive $p_Z(z) = \prod_i p(z_i \mid z_1, \cdots, z_{i-1}).$
- Autoregressive models are flows. Just another MAF layer.
- See also neural autoregressive flows (Huang et al., ICML-18)

VAE + Flow Model

$$
\phi \leftarrow -\left(\begin{array}{c}\n \bullet \\
 \bullet \\
 \bullet \\
 \bullet \\
 \bullet \\
 \bullet\n \end{array}\n\right)
$$

$$
\log p(\mathbf{x}; \theta) \geq \sum_{\mathbf{z}} q(\mathbf{z} | \mathbf{x}; \phi) \log p(\mathbf{z}, \mathbf{x}; \theta) + H(q(\mathbf{z} | \mathbf{x}; \phi)) = \underbrace{\mathcal{L}(\mathbf{x}; \theta, \phi)}_{\text{ELBO}}
$$

$$
= \mathcal{L}(\mathbf{x}; \theta, \phi) + \underbrace{D_{KL}(q(\mathbf{z} | \mathbf{x}; \phi) || p(\mathbf{z} | \mathbf{x}; \theta))}_{\text{Gap between true log-likelihood and ELBO}}
$$

- *q*(**z***|***x**; *ϕ*) is often too simple (Gaussian) compared to the true posterior $p(\mathbf{z}|\mathbf{x}; \theta)$, hence ELBO bound is loose
- **Idea:** Make posterior more flexible: $\mathbf{z}' \sim q(\mathbf{z}'|\mathbf{x}; \phi)$, $\mathbf{z} = f_{\phi'}(\mathbf{z})$ for an invertible *fϕ′* (Rezende and Mohamed, 2015; Kingma et al., 2016)
- Still easy to sample from, and can evaluate density.

$VAE + Flow Model$

Posterior approximation is more flexible, hence we can get tighter ELBO (closer to true log-likelihood).

Multimodal variants

• Goal: Learn a joint distribution over the two domains $p(x_1, x_2)$, e.g., color and gray-scale images Can use a VAE style model:

Learn $p_\theta(x_1, x_2)$, use inference nets $q_\phi(z \mid x_1)$, $q_\phi(z \mid x_2)$, $q_\phi(z \mid x_1, x_2)$. Conceptually similar to semi-supervised VAE in HW2.

Variational RNN

- Goal: Learn a joint distribution over a sequence $p(x_1, \dots, x_T)$
- VAE for sequential data, using latent variables z_1, \dots, z_T . Instead of training separate VAEs $z_i \rightarrow x_i$, train a joint model:

- Use RNNs to model the conditionals (similar to PixelRNN)
- Use RNNs for inference $p(z_{\leq T}|x_{\leq T}) = \prod_{t=1}^{T} q(z_t | z_{< t}, x_{\leq t})$
- Train like VAE to maximize ELBO. Conceptually similar to PixelVAE. S tegano Ermondo Ermondo Ermondo Ermondo Ermondo Ermondo Ermondo este un establecente de la contradicción de la c
Entre 12 de decembro 2014 en 1918 en 1920 en 1920

Combining losses

$$
\begin{array}{c}\n\mathbf{z} \\
\hline\n\mathbf{f}_{\theta} \\
\hline\n\mathbf{x}\n\end{array}
$$

• Flow model, the marginal likelihood $p(x)$ is given by

$$
p_X(\mathbf{x}; \theta) = p_Z\left(\mathbf{f}_{\theta}^{-1}(\mathbf{x})\right) \left| \det \left(\frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial \mathbf{x}}\right) \right|
$$

- Can also be thought of as the generator of a GAN
- Should we train by min*^θ DKL*(*pdata, pθ*) or min*^θ JSD*(*pdata, pθ*)?

FlowGAN

 Δ lthough $D_{\mathsf{KL}}(p_{\mathsf{data}}, p_{\theta}) = 0$ if and only if $JSD(p_{\mathsf{data}}, p_{\theta}) = 0$, optimizing one does not necessarily optimize the other. If **z***,* **x** have same dimensions, can optimize min*^θ KL*(*pdata, pθ*) + *λJSD*(*pdata, pθ*)

Adversarial Autoencoder (VAE + GAN)

$$
\phi = \frac{\sqrt{2}}{\sqrt{2}}
$$
\n
$$
E_{\text{X} \sim p_{data}} [\log p(\mathbf{x}; \theta) - D_{\text{KL}}(q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{z} | \mathbf{x}; \theta))]
$$
\n
$$
\phi = \frac{\sqrt{2}}{\sqrt{2}} \left[\frac{D_{\text{KL}}(p_{data}(\mathbf{x}) || p(\mathbf{x}; \theta)) - E_{\text{X} \sim p_{data}}[D_{\text{KL}}(q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{z} | \mathbf{x}; \theta)) \right]
$$
\n
$$
\phi = \frac{\sqrt{2}}{\sqrt{2}} \left[\frac{D_{\text{KL}}(p_{data}(\mathbf{x}) || p(\mathbf{x}; \theta)) - E_{\text{X} \sim p_{data}}[D_{\text{KL}}(q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{z} | \mathbf{x}; \theta)) \right]
$$

- Note: regularized maximum likelihood estimation
- Can add in a GAN objective *−JSD*(*pdata, p*(**x**; *θ*)) to get sharper samples, i.e., discriminator attempting to distinguish VAE samples from real ones.

An alternative interpretation

$$
\frac{E_{x \sim p_{data}}[\mathcal{L}(\mathbf{x}; \theta, \phi)]}{\approx \text{training ob.}} = E_{x \sim p_{data}}[\log p(\mathbf{x}; \theta) - D_{KL}(q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{z} \mid \mathbf{x}; \theta))]
$$
\n
$$
= \frac{1}{\sum_{x} p_{data}[\log p(\mathbf{x}; \theta) - D_{KL}(q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{z} \mid \mathbf{x}; \theta))]
$$
\n
$$
= -\sum_{x} p_{data}(\mathbf{x}) \left(\log \frac{p_{data}(\mathbf{x})}{p(\mathbf{x}; \theta)} + \sum_{z} q(\mathbf{z} \mid \mathbf{x}; \phi) \log \frac{q(\mathbf{z} \mid \mathbf{x}; \phi)}{p(\mathbf{z} \mid \mathbf{x}; \theta)} \right)
$$
\n
$$
= -\sum_{x} p_{data}(\mathbf{x}) \left(\sum_{z} q(\mathbf{z} \mid \mathbf{x}; \phi) \log \frac{q(\mathbf{z} \mid \mathbf{x}; \phi)}{p(\mathbf{z} \mid \mathbf{x}; \theta)p(\mathbf{x}; \theta)} \right)
$$
\n
$$
= -\sum_{x, z} p_{data}(\mathbf{x}) q(\mathbf{z} \mid \mathbf{x}; \phi) \log \frac{p_{data}(\mathbf{x}) q(\mathbf{z} \mid \mathbf{x}; \phi)}{p(\mathbf{x}; \theta)p(\mathbf{x}; \theta)}
$$
\n
$$
= -D_{KL}(p_{data}(\mathbf{x})q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{x}; \theta)p(\mathbf{z} \mid \mathbf{x}; \phi))
$$
\n
$$
= -D_{KL}(p_{data}(\mathbf{x})q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{x}; \theta)p(\mathbf{z} \mid \mathbf{x}; \phi))
$$
\n
$$
= p_{max}(\mathbf{x}; \phi) || p(\mathbf{x}; \phi)|| \frac{p(\mathbf{x}; \theta)p(\mathbf{z} \mid \mathbf{x}; \phi)}{p(\mathbf{x}; \theta)p(\mathbf{z} \mid \mathbf{x}; \phi)}
$$
\n
$$
= -D_{KL}(p_{data}(\mathbf{x})q(\mathbf{x} \mid \mathbf{x}; \phi) || p(\mathbf{x}; \theta
$$

 \setminus

An alternative interpretation

$$
\phi \rightarrow \phi
$$
\n
$$
E_{\mathbf{x} \sim p_{data}} \left[\mathcal{L}(\mathbf{x}; \theta, \phi) \right] \equiv -D_{KL} \left(\underbrace{p_{data}(\mathbf{x}) q(\mathbf{z} \mid \mathbf{x}; \phi)}_{q(\mathbf{z}, \mathbf{x}; \phi)} \parallel \underbrace{p(\mathbf{x}; \theta) p(\mathbf{z} \mid \mathbf{x}; \theta)}_{p(\mathbf{z}, \mathbf{x}; \theta)} \right)
$$

- Optimizing ELBO is the same as matching the inference distribution *q*(**z***,* **x**; ϕ) to the generative distribution $p(z, x; \theta) = p(z)p(x|z; \theta)$
- Intuition: $p(\mathbf{x}; \theta)p(\mathbf{z}|\mathbf{x}; \theta) = p_{data}(\mathbf{x})q(\mathbf{z}|\mathbf{x}; \phi)$ if
	- \bullet $p_{data}(\mathbf{x}) = p(\mathbf{x}; \theta)$
	- **2** $q(z | x; \phi) = p(z | x; \theta)$ for all **x**
	- ³ Hence we get the VAE objective:
	- $-D_{\mathsf{KL}}(p_{data}(\mathbf{x})||p(\mathbf{x};\theta)) E_{\mathbf{x} \sim p_{data}}[D_{\mathsf{KL}}(q(\mathbf{z} \mid \mathbf{x};\phi)||p(\mathbf{z} \mid \mathbf{x};\theta))]$
- Many other variants are possible! $VAE + GAN$:
	- $JSD(p_{data}(\mathbf{x}) || p(\mathbf{x}; \theta)) D_{\mathit{KL}}(p_{data}(\mathbf{x}) || p(\mathbf{x}; \theta)) E_{\mathbf{x} \sim p_{data}}[D_{\mathit{KL}}(q(\mathbf{z} \mid \mathbf{x}; \phi) || p(\mathbf{z} \mid \mathbf{x}; \theta))]$

Adversarial Autoencoder ($VAE + GAN$)

$$
E_{\mathbf{x} \sim p_{data}}[\underline{\mathcal{L}(\mathbf{x}; \theta, \phi)}] \equiv -D_{KL}(\underbrace{p_{data}(\mathbf{x})q(\mathbf{z} \mid \mathbf{x}; \phi)}_{q(\mathbf{z}, \mathbf{x}; \phi)} || \underbrace{p(\mathbf{x}; \theta)p(\mathbf{z} \mid \mathbf{x}; \theta)}_{p(\mathbf{z}, \mathbf{x}; \theta)})
$$
\nOptimizing ELBO is the same as matching the inference distribution $q(\mathbf{z}, \mathbf{x}; \phi)$ to the generative distribution $p(\mathbf{z}, \mathbf{x}; \theta)$

- **Symmetry:** Using alternative factorization:
	- *p*(**z**)*p*(**x**|**z**; θ) = q (**z**; ϕ) q (**x** |**z**; ϕ) if
		- $q(z; \phi) = p(z)$
		- 2 $q(\mathbf{x} \mid \mathbf{z}; \phi) = p(\mathbf{x} | \mathbf{z}; \theta)$ for all **z**
		- ³ We get an *equivalent* form of the VAE objective: $-D_{\mathsf{KL}}(q(\mathsf{z};\phi)\|p(\mathsf{z})) - \mathsf{E}_{\mathsf{z}\sim q(\mathsf{z};\phi)}\left[D_{\mathsf{KL}}(q(\mathsf{x} \mid \mathsf{z};\phi)\|p(\mathsf{x} \vert \mathsf{z};\theta))\right]$
- Other variants are possible. For example, can add *−JSD*(*q*(**z**; *ϕ*)*∥p*(**z**)) to match features in latent space (Zhao et al., 2017; Makhzani et al, 2018)

Information Preference

$$
E_{\mathbf{x} \sim p_{data}}[\underline{\mathcal{L}(\mathbf{x}; \theta, \phi)}] \equiv -D_{KL}(\underbrace{p_{data}(\mathbf{x})q(\mathbf{z} \mid \mathbf{x}; \phi)}_{q(\mathbf{z}, \mathbf{x}; \phi)} || \underbrace{p(\mathbf{x}; \theta)p(\mathbf{z} \mid \mathbf{x}; \theta)}_{p(\mathbf{z}, \mathbf{x}; \theta)})
$$

- ELBO is optimized as long as $q(z, x; \phi) = p(z, x; \theta)$. Many solutions are possible! For example,
	- **1** $p(z, x; \theta) = p(z)p(x|z; \theta) = p(z)p_{data}(x)$
	- 2 $q(z, x; \phi) = p_{data}(x)q(z|x; \phi) = p_{data}(x)p(z)$
	- ³ Note **z** and **z** are independent. **z** carries no information about **x**. This happens in practice when $p(x|z; \theta)$ is too flexible, like PixelCNN.
- **Issue:** Many more variables than constraints

Information Maximizing

Explicitly add a mutual information term to the objective

$$
-D_{\mathsf{KL}}\big(p_{\mathsf{data}}(\mathbf{x})q(\mathbf{z} \mid \mathbf{x}; \phi\big) \big\| \underbrace{p(\mathbf{x}; \theta)}p(\mathbf{z} | \mathbf{x}; \theta)\big) + \alpha \mathsf{MI}(\mathbf{x}, \mathbf{z})
$$

 $q(z, x; \phi)$ $p(z, x; \theta)$

MI intuitively measures how far **x** and **z** are from being independent

$$
MI(\mathbf{x}, \mathbf{z}) = D_{KL} (p(\mathbf{z}, \mathbf{x}; \theta) || p(\mathbf{z}) p(\mathbf{x}; \theta))
$$

• InfoGAN (Chen et al, 2016) used to learn meaningful (disentangled?) representations of the data

 $MI(\mathbf{x}, \mathbf{z}) - E_{\mathbf{x} \sim p_{\theta}}[D_{KL}(p_{\theta}(\mathbf{z}|\mathbf{x})||q_{\phi}(\mathbf{z}|\mathbf{x}))] - JSD(p_{data}(\mathbf{x})||p_{\theta}(\mathbf{x}))$

β-VAE

Model proposed to learn disentangled features (Higgins, 2016)

$$
-E_{q_{\phi}(\mathbf{x},\mathbf{z})}[\log p_{\theta}(\mathbf{x}|\mathbf{z})] + \beta E_{\mathbf{x} \sim p_{data}}\left[D_{\mathcal{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x})\|p(\mathbf{z}))\right]
$$

It is a VAE with scaled up KL divergence term. This is equivalent (up to constants) to the following objective:

 $(\beta-1)M\mathsf{I}(\mathsf{x};\mathsf{z})+\beta D_{\mathsf{KL}}(q_\phi(\mathsf{z})\|p(\mathsf{z}))) + \mathsf{E}_{q_\phi(\mathsf{z})}[D_{\mathsf{KL}}(q_\phi(\mathsf{x}|\mathsf{z})\|p_\theta(\mathsf{x}|\mathsf{z}))]$

See *The Information Autoencoding Family: A Lagrangian Perspective on Latent Variable Generative Models* for more examples.

Conclusion

- We have covered several useful building blocks: autoregressive, latent variable models, flow models, GANs.
- Can be combined in many ways to achieve different tradeoffs: many of the models we have seen today were published in top ML conferences in the last couple of years
- Lots of room for exploring alternatives in your projects!
- Which one is best? Evaluation is tricky. Still largely empirical