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Selected GANs

https://github.com/hindupuravinash/the-gan-zoo

The GAN Zoo: List of all named GANs

Today

Rich class of likelihood-free objectives via f -GANs
Inferring latent representations via BiGAN
Application: Image-to-image translation via CycleGANs
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Beyond KL and Jenson-Shannon Divergence

What choices do we have for d(·)?

KL divergence: Autoregressive Models, Flow models

(scaled and shifted) Jenson-Shannon divergence: original GAN
objective
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f divergences

Given two densities p and q, the f -divergence is given by

Df (p, q) = Ex∼q

[
f

(
p(x)

q(x)

)]
where f is any convex, lower-semicontinuous function with f (1) = 0.

Convex: Line joining any two points lies above the function

Lower-semicontinuous: function value at any point x0 is close to
f (x0) or greater than f (x0)

Example: KL divergence with f (u) = u log u
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f divergences

Many more f-divergences!
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f -GAN: Variational Divergence Minimization

To use f -divergences as a two-sample test objective for likelihood-free
learning, we need to be able to estimate it only via samples

Fenchel conjugate: For any function f (·), its convex conjugate is
defined as

f ∗(t) = sup
u∈domf

(ut − f (u))

Duality: f ∗∗ = f . When f (·) is convex, lower semicontinous, so is
f ∗(·)

f (u) = sup
t∈domf ∗

(tu − f ∗(t))
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f -GAN: Variational Divergence Minimization

We can obtain a lower bound to any f -divergence via its Fenchel
conjugate

Df (p, q) = Ex∼q

[
f
(
p(x)
q(x)

)]
= Ex∼q

[
supt∈domf ∗

(
t p(x)q(x) − f ∗(t)

)]
:= Ex∼q

[
T (x)p(x)q(x) − f ∗(T (x))

]
=
∫
X [T (x)p(x)− f ∗(T (x))q(x)]dx

≥ supT∈T
∫
X (T (x)p(x)− f ∗(T (x))q(x))dx

= supT∈T (Ex∼p [T (x)]− Ex∼q [f ∗(T (x)))])

where T : X 7→ R is an arbitrary class of functions

Note: Lower bound is likelihood-free w.r.t. p and q
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f -GAN: Variational Divergence Minimization

Variational lower bound

Df (p, q) ≥ sup
T∈T

(Ex∼p [T (x)]− Ex∼q [f ∗(T (x)))])

Choose any f -divergence

Let p = pdata and q = pG

Parameterize T by φ and G by θ

Consider the following f -GAN objective

min
θ

max
φ

F (θ, φ) = Ex∼pdata [Tφ(x)]− Ex∼pGθ [f ∗(Tφ(x)))]

Generator Gθ tries to minimize the divergence estimate and
discriminator Tφ tries to tighten the lower bound
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Inferring latent representations in GANs

The generator of a GAN is typically a directed, latent variable model
with latent variables z and observed variables x How can we infer the
latent feature representations in a GAN?

Unlike a normalizing flow model, the mapping G : z 7→ x need not be
invertible

Unlike a variational autoencoder, there is no inference network q(·)
which can learn a variational posterior over latent variables

Solution 1: For any point x, use the activations of the prefinal layer
of a discriminator as a feature representation

Intuition: Similar to supervised deep neural networks, the
discriminator would have learned useful representations for x while
distinguishing real and fake x
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Inferring latent representations in GANs

If we want to directly infer the latent variables z of the generator, we
need a different learning algorithm

A regular GAN optimizes a two-sample test objective that compares
samples of x from the generator and the data distribution

Solution 2: To infer latent representations, we will compare samples
of x, z from the joint distributions of observed and latent variables as
per the model and the data distribution

For any x generated via the model, we have access to z (sampled
from a simple prior p(z))

For any x from the data distribution, the z is however unobserved
(latent)
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Bidirectional Generative Adversarial Networks (BiGAN)

In a BiGAN, we have an encoder network E in addition to the
generator network G

The encoder network only observes x ∼ pdata(x) during training to
learn a mapping E : x 7→ z

As before, the generator network only observes the samples from the
prior z ∼ p(z) during training to learn a mapping G : z 7→ x
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Bidirectional Generative Adversarial Networks (BiGAN)

The discriminator D observes samples from the generative model
z,G (z) and the encoding distribution E (x), x

The goal of the discriminator is to maximize the two-sample test
objective between z,G (z) and E (x), x

After training is complete, new samples are generated via G and
latent representations are inferred via E
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Translating across domains

Image-to-image translation: We are given images from two domains,
X and Y
Paired vs. unpaired examples

Paired examples can be expensive to obtain. Can we translate from
X ↔ Y in an unsupervised manner?
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CycleGAN: Adversarial training across two domains

To match the two distributions, we learn two parameterized
conditional generative models G : X ↔ Y and F : Y ↔ X
G maps an element of X to an element of Y. A discriminator DY
compares the observed dataset Y and the generated samples
Ŷ = G (X )
Similarly, F maps an element of Y to an element of X . A
discriminator DX compares the observed dataset X and the generated
samples X̂ = F (Y )
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CycleGAN: Cycle consistency across domains

Cycle consistency: If we can go from X to Ŷ via G , then it should
also be possible to go from Ŷ back to X via F

F (G (X )) ≈ X
Similarly, vice versa: G (F (Y )) ≈ Y

Overall loss function

min
F ,G ,DX ,DY

LGAN(G ,DY ,X ,Y ) + LGAN(F ,DX ,X ,Y )

+λ (EX [‖F (G (X ))− X‖1] + EY [‖G (F (Y ))− Y ‖1])︸ ︷︷ ︸
cycle consistency
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CycleGAN in practice
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Summary of Generative Adversarial Networks

Key observation: Samples and likelihoods are not correlated in
practice

Two-sample test objectives allow for learning generative models only
via samples (likelihood-free)

Wide range of two-sample test objectives covering f -divergences (and
more)

Latent representations can be inferred via BiGAN

Interesting applications such as CycleGAN
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