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Selected GANs

@ https://github.com/hindupuravinash/the-gan-zoo
The GAN Zoo: List of all named GANs
e Today

@ Rich class of likelihood-free objectives via f-GANs
o Inferring latent representations via BiGAN
o Application: Image-to-image translation via CycleGANs
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Beyond KL and Jenson-Shannon Divergence

d(paatar pﬂ)

Pdata

x ~Pdata oem

j=12,..,|D| Model family
What choices do we have for d(-)?

o KL divergence: Autoregressive Models, Flow models

o (scaled and shifted) Jenson-Shannon divergence: original GAN
objective
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@ Given two densities p and g, the f-divergence is given by

010,01~ 5[ (23]

where f is any convex, lower-semicontinuous function with (1) = 0.
@ Convex: Line joining any two points lies above the function

@ Lower-semicontinuous: function value at any point xq is close to
f(xo0) or greater than f(xg)
A

. ,

X, \
e Example: KL divergence with f(u) = ulogu
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f divergences

Many more f-divergences!

Name Dy(P|Q) Generator f(u)
Total variation 3 [p(z) — ()| dz dlu—1]
Kullback-Leibler J p(z)log "—H dz ulogu
Reverse Kullback-Leibler [ g(z log ( ) —logu
Pearson x? I M dz (u—1)2
Neyman x? I L&)#—D— dz Llu—“)g
Squared Hellinger (\/_.'t - \/q(_;r)2 dz (Vu-— l)2
Jeffrey [ (o(z) — q(z)) log (J—l) de (u—1)logu

Jensen-Shannon
Jensen-Shannon-weighted
GAN

a-divergence (a ¢ {0,1})

5 [p(z) logﬁgﬁﬁ(z+q(z)logyI tarm 4z

Jn( z)wlugm + (1 = m)a(z)log 7 (l;=lq<rl dz
fp(z) log %;)(7 +q(x) log 5345 dz — log(4)

= [ (¢@ [(23)" - 1] - ale@) - p(a))) do

—(u+1)log 1% +ulogu
mulogu — (1 - m + mu)log(l — 7 + wu)
ulogu — (u+ 1)log(u+1)
ﬁ(u”—l—a(u—l))
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f-GAN: Variational Divergence Minimization

@ To use f-divergences as a two-sample test objective for likelihood-free
learning, we need to be able to estimate it only via samples

@ Fenchel conjugate: For any function f(-), its convex conjugate is
defined as
*(t) = sup (ut—f(u))

uedomys

@ Duality: f** = f. When f(-) is convex, lower semicontinous, so is
()
f(u)= sup (tu—fF*(t))

tedomyx
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f-GAN: Variational Divergence Minimization

@ We can obtain a lower bound to any f-divergence via its Fenchel
conjugate

Ds(p, q) = Bevg [ (
= Exq |:SuPt€d0rnf* ( - (1) )}

= Ex~q [T( )ZEX FH(T(x )}
= [ [T(x)p(x) = F*(T(x))q(x)] dx

> suprer [x(T(x)p(x) — £*(T(x))q(x))dx
—supTeT( pr[T( )] - x~q [f*(T(X)))])

where 7 : X — R is an arbitrary class of functions

@ Note: Lower bound is likelihood-free w.r.t. p and g
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f-GAN: Variational Divergence Minimization

@ Variational lower bound

Df(p,q) = sup (Exp [T(X)] = Exng [F*(T(x)))])
TeT

Choose any f-divergence

°
© Let p = pgata and g = pg

@ Parameterize T by ¢ and G by 6

@ Consider the following f-GAN objective

mein mq?x F(ev ¢) = EXNPdata [T¢(X)] - EXNPGG [f*(T¢(X)))]

@ Generator Gy tries to minimize the divergence estimate and
discriminator T tries to tighten the lower bound
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Inferring latent representations in GANs

@ The generator of a GAN is typically a directed, latent variable model
with latent variables z and observed variables x How can we infer the
latent feature representations in a GAN?

@ Unlike a normalizing flow model, the mapping G : z — x need not be
invertible

@ Unlike a variational autoencoder, there is no inference network q(-)
which can learn a variational posterior over latent variables

@ Solution 1: For any point x, use the activations of the prefinal layer
of a discriminator as a feature representation

@ Intuition: Similar to supervised deep neural networks, the
discriminator would have learned useful representations for x while
distinguishing real and fake x
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Inferring latent representations in GANs

o If we want to directly infer the latent variables z of the generator, we
need a different learning algorithm

@ A regular GAN optimizes a two-sample test objective that compares
samples of x from the generator and the data distribution

@ Solution 2: To infer latent representations, we will compare samples
of x,z from the joint distributions of observed and latent variables as
per the model and the data distribution

@ For any x generated via the model, we have access to z (sampled
from a simple prior p(z))

@ For any x from the data distribution, the z is however unobserved
(latent)
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Bidirectional Generative Adversarial Networks (BiGAN)

o
5y
s

features
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Source: Donahue et al., 2016

@ In a BiGAN, we have an encoder network E in addition to the
generator network G

@ The encoder network only observes x ~ pgata(x) during training to
learn a mapping E : x— z

@ As before, the generator network only observes the samples from the
prior z ~ p(z) during training to learn a mapping G : z > x

®

®_
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Bidirectional Generative Adversarial Networks (BiGAN)

o
=)
s

features
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' G
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Source: Donahue et al., 2016

@ The discriminator D observes samples from the generative model
z, G(z) and the encoding distribution E(x), x

@ The goal of the discriminator is to maximize the two-sample test
objective between z, G(z) and E(x),x

@ After training is complete, new samples are generated via G and
latent representations are inferred via E

\G)- )
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Translating across domains

@ Image-to-image translation: We are given images from two domains,

X and Y

@ Paired vs. unpaired examples

T

Paired Unpaired
Yi Y

Source: Zhu et al., 2016

@ Paired examples can be expensive to obtain. Can we translate from
X <> Y in an unsupervised manner?
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CycleGAN: Adversarial training across two domains

@ To match the two distributions, we learn two parameterized
conditional generative models G : X <+ Y and F: )Y + X

@ G maps an element of X" to an element of ). A discriminator Dy
compares the observed dataset Y and the generated samples
Y = G(X)

@ Similarly, F maps an element of ) to an element of X. A
discriminator Dy compares the observed dataset X and the generated
samples X = F(Y)

7 N\
~

Source: Zhu et al., 2016
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CycleGAN: Cycle consistency across domains

@ Cycle consistency: If we can go from X to Y via G, then it should
also be possible to go from Y back to X via F

o F(G(X)) ~ X

o Similarly, vice versa: G(F(Y)) =Y

e = a
AN alnH

X

cycle-consistency N _..-\

oss

./

O

Y X Y

cycle-consistency
:——*.\ L oss

@ Overall loss function

Source: Zhu et al., 2016

min ﬁGAN(G,Dy,X, Y)+EGAN(F, Dx,X, Y)

F,G,Dx,Dy

FAEXIF600) — X[l + Ev[IG(F(Y)) — YiRl)
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CycleGAN in practice

Monet T Photos Zebras Horses Summer _ Winter

horse — zebra

Cezanne

Photograph
Source: Zhu et al., 2016
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Summary of Generative Adversarial Networks

o Key observation: Samples and likelihoods are not correlated in
practice

@ Two-sample test objectives allow for learning generative models only
via samples (likelihood-free)

e Wide range of two-sample test objectives covering f-divergences (and
more)

@ Latent representations can be inferred via BiGAN

@ Interesting applications such as CycleGAN
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