CS 236: Deep Generative Models

Stefano Ermon and Aditya Grover Stanford University URL: deepgenerativemodels.github.io

Introduction

Challenge: understand complex, unstructured inputs

Computer Vision

Computational Speech

Natural Language Processing

Robotics

Introduction

Richard Feynman: "What I cannot create, I do not understand"

Generative modeling: "What I understand, I can create"

Generative Modeling: Computer Graphics

How to generate natural images with a computer?

Our models will have similar structure (generation + inference)

Statistical Generative Models

Statistical generative models are learned from data

Data (e.g., images of bedrooms)

Prior Knowledge (e.g., physics, materials, ..)

Priors are always necessary, but there is a spectrum

Statistical Generative Models

A statistical generative model is a **probability distribution** p(x)

- Data: samples (e.g., images of bedrooms)
- **Prior knowledge:** parametric form (e.g., Gaussian?), loss function (e.g., maximum likelihood?), optimization algorithm, etc.

It is generative because **sampling from p(x) generates new images**

Discriminative vs. generative

Discriminative: classify bedroom vs. dining room

The input image X is always given. **Goal**: a good decision boundary, via **conditional distribution**

P(Y = Bedroom | X=

Ex: logistic regression, convolutional net, etc.

Generative: generate X

The input X is **not** given. Requires a model of the **joint distribution**

P(Y = Bedroom , X=

Discriminative vs. generative

Joint and conditional are related via **Bayes Rule**:

P(Y = Bedroom | X=

P(X=

Therefore it cannot handle missing data

P(Y = Bedroom | X=

Conditional Generative Models

Class conditional generative models are also possible:

It's often useful to condition on rich side information Y

ption = "A black table with 6 chairs")

A discriminative model is a very simple conditional generative model of Y:

Progressive Growing of GANs

Karras et al., 2018

WaveNet

Text to Speech

van den Oord et al, 2016c

Image Super Resolution

Conditional generative model P(high res image | low res image)

Ledig et al., 2017

Audio Super Resolution

Conditional generative model P(high-res signal | low-res audio signal)

Kuleshov et al., 2017

Machine Translation

Conditional generative model P(English text| Chinese text)

Figure from Google AI research blog.

Image Translation

Conditional generative model P(zebra images | horse images)

Zhu et al., 2017

Imitation Learning

Conditional generative model P(actions | past observations)

Li et al., 2017

Roadmap and Key Challenges

- Representation: how do we model the joint distribution of many random variables?
 - Need compact representation
- Learning: what is the right way to compare probability distributions?

- Inference: how do we invert the generation process (e.g., vision as inverse graphics)?
 - Unsupervised learning: recover high-level descriptions (features) from raw data

Syllabus

- Fully observed likelihood-based models
 - Autoregressive
 - Flow-based models
- Latent variable models
 - Variational learning
 - Inference amortization
 - Variational autoencoder
- Implicit generative models
 - Two sample tests, embeddings, F-divergences
 - Generative Adversarial Networks
- Learn about algorithms, theory & applications

Prerequisites

- Basic knowledge about machine learning from at least one of CS 221, 228, 229 or 230.
- Basic knowledge of probabilities and calculus:
 - Gradients, gradient-descent optimization, backpropagation
 - Random variables, independence, conditional independence
 - Bayes rule, chain rule, change of variables formulas
- Proficiency in some programming language, preferably Python, required.

Logistics

- Class webpage: <u>https://deepgenerativemodels.github.io/</u>
- http://piazza.com/stanford/fall2018/cs236
- There is no required textbook. Reading materials and course notes will be provided.
- Suggested Reading: *Deep Learning* by Ian Goodfellow, Yoshua Bengio, Aaron Courville. Online version available free <u>here</u>.
- Lecture notes are under construction
- Teaching Assistants: Yang Song, Jiaming Song, Rui Shu, Casey Chu, Nish Khandwala
- Office hours: See calendar on class website

Logistics – Grading policies

- Grading Policy:
 - Three homeworks (15% each): mix of conceptual and programming based questions
 - Midterm: 15%
 - Course Project: 40%
 - Proposal: 5%
 - Progress Report: 10%
 - Poster Presentation: 10%
 - Final Report: 15%

Projects

- Course projects will be done in groups of up to 3 students and can fall into one or more of the following categories:
 - Application of deep generative models on a novel task/dataset
 - Algorithmic improvements into the evaluation, learning and/or inference of deep generative models
 - Theoretical analysis of any aspect of existing deep generative models
- Teaching staff will suggest possible projects
- We will provide Google Cloud coupons